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Abstract – This paper discusses the application of evolutionary multi-objective optimization 

algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II 

(MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-

point loading. The valve-point loading introduce ripples in the input-output characteristics of 

generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus 

and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To 

compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated 

using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. 

Furthermore, three different performance metrics such as convergence, diversity and Inverted 

Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. 

Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve 

the CEED problem effectively. 
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1. Introduction 
 
The main objective of Economic Dispatch (ED) problem 

is to find the optimal combination of power generation that 

minimizes the total fuel cost while satisfying the systems 

constraints. Various conventional methods like Lambda-

iteration, Base point participation factor, Gradient method 

and Newton method are used to solve ED problem. In all 

these methods, the fuel cost function is chosen to be of 

quadratic form [1]. In reality, the input-output characteristics 

of generating units are non-linear due to valve-point 

loading effect. To achieve more accurate dispatch of 

generation, valve-point loading effect is included in the 

fuel cost function of the thermal generators. Conventional 

methods have failed to obtain global optimal solution. 

Hence, stochastic methods such as Genetic Algorithm (GA) 

[2], Evolutionary Programming (EP) [3], Improved EP [4], 

Particle Swarm Optimization (PSO) [5], Differential 

Evolution (DE) [6] and Harmony Search Algorithm (HSA) 

[7] have been used to solve the ED problem with valve-

point loading effect by adding the rectified sinusoidal 

contribution to the conventional quadratic cost function. 

With the increasing awareness of environmental 

protection in recent years, Economic Emission Dispatch 

(EED) is proposed as an alternative to achieve simul-

taneously the minimization of fuel costs and pollutant 

emissions [8]. However, minimizing the emission and cost 

are usually two conflicting objectives. Thus, it is not 

possible to minimize both of them simultaneously and 

some form of conflicting resolution must be adopted to 

arrive at a solution [9].  

Several EED strategies have appeared in the literature 

over the years. El-kieb et al have applied a Lagrange 

Relaxation based algorithm to environmental constraints of 

ED problem [10]. The economic and environmental 

objectives simultaneously combine them linearly to form a 

single objective function. By varying the weight, the trade-

off between fuel cost and environmental cost was 

determined by Ramanathan [11]. Yokoyama et al have 

applied ε-constrained algorithm to treat the optimal 

dispatch problems with multiple performance indices and 

to grasp trade-off relations between selected indices [12]. 

Farag et al have proposed a Linear Programming based 

optimization method, in which the emission function is 

treated as a constraint [13]. Nanda et al introduced the 

Goal Programming technique and the Gauss-Seidel method 

for the EED problem [14]. However, these classical 

methods are highly sensitive and frequently converge at 

local optimum solution and computational time increases 

with the increase of the dimensionality of the problem. 

Later, the use of heuristic optimization approaches such 

as GA [15], EP [16] is proposed to solve the multi-
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objective constrained optimization problem. Prabakar et al 

have applied modified price penalty factor method to 

Combined Economic Emission Dispatch (CEED) problem 

and converted to single objective problem [17]. Recently, 

the Multi-Objective Evolutionary Algorithms (MOEAs) are 

used to eliminate many difficulties in the classical methods 

[18]. Because, population of solutions is used in their 

search and multiple Pareto-optimal solutions can be found 

in one single simulation run. Some of the popular MOEAs 

are Non Dominated Sorting Genetic Algorithm (NSGA), 

Niched Pareto Genetic Algorithm, Strength Pareto 

Evolutionary Algorithm (SPEA), Non Dominated Sorting 

Genetic Algorithm-II (NSGA-II), Pareto Archived Evolution 

Strategy etc. [19]. Abido has applied NSGA approaches for 

solving the multi-objective CEED problem. In addition, a 

fuzzy based mechanism is employed to extract the best 

compromise solution [20]. NSGA suffers from computational 

complexity, non-elitist approach and the need to specify a 

sharing parameter. An improved version of NSGA known 

as NSGA-II, which resolved CEED problems and uses 

elitism to create a diverse Pareto-optimal front, has been 

subsequently presented [21, 22]. Although in NSGA-II the 

crowding distance operator will ensure diversity along the 

non-dominated front, lateral diversity will be lost. To 

overcome this, crowding distance operator is replaced by 

dynamic crowding distance (DCD) and controlled elitism 

(CE) is incorporated to NSGA-II [23, 24] and named as 

modified NSGA-II (MNSGA-II) has been used to solve the 

CEED problem. Jeyadevi et al have applied MNSGA-II 

algorithm to solve multi-objective optimal reactive power 

dispatch problem by minimizing real power loss and 

maximizing the system voltage stability [25]. Most recently, 

the basic HSA is updated using fast non-dominated sorting 

and diversity with DCD strategy and named as Multi-

Objective HSA has been used to solve CEED problem [26]. 

Wu et al have proposed multi-objective DE (MODE) 

algorithm with elitist archive and crowding entropy based 

diversity measure to solve the environmental/economic 

dispatch problem [27]. Youlin Lu et al have proposed an 

Enhanced Multi-Objective Differential Evolution (E-

MODE) algorithm for handling the complicated constraints 

and improve the convergence performance of EED 

problem [28].  

Very few works are reported for solving CEED problem 

with valve-point loading effect. Basu analyzed the interactive 

fuzzy satisfying based Simulated Annealing technique for 

CEED problem with non-smooth fuel cost and emission 

level functions. The major advantage of this method is 

obtaining a compromising solution in the presence of 

conflicting objectives [29]. MODE algorithm has been 

applied for solving EED problems with valve-point loading 

and only extreme points obtained are compared with 

Partial DE, NSGA-II and SPEA-2 for the three different 

test systems. However, the performance measures of the 

different MOEAs with respect to reference Pareto-front 

are not considered in this paper [30]. Also, the transmission 

line losses are calculated through Bmn coefficients [29, 30]. 

In this paper, NSGA-II and MNSGA-II algorithms are 

used to solve CEED problem with valve-point effect. 

RCGA with weighted sum approach is used to generate 

reference Pareto-front and compare the performance of 

NSGA-II and MNSGA-II algorithms. Three different 

performance metrics convergence, diversity and IGD were 

used for evaluating the closeness to the reference Pareto 

optimal front. The rest of this paper is organized as follows: 

Section 2 describes the CEED problem formulation. Imple-

mentation of NSGA-II and MNSGA-II for the CEED 

problem is explained in section 3. Section 4 describes 

various performance measures. The simulation results of 

various test cases are presented in section 5 and section 6 

concludes.  

 
 

2. Problem Formulation 

 

The multi-objective CEED problem with its constraints 

is formulated as a non-linear constrained problem as 

follows.  

 

Minimize [F (Pg), E (Pg)] (1) 
 

subject to power balance and generation capacity 

constraints [24]. Where, F(Pg): Total fuel cost ($/hr), and 

E(Pg): Total emission cost (lb/hr) 

 

2.1 Objective functions 
 
Minimization of fuel cost with valve-point loading 

effect: Large steam turbine generators will have a number 

of steam admission valves that are opened in sequence to 

obtain ever-increasing output of the unit and the input-

output characteristics are not always smooth. These “valve-

points” are illustrated in Fig. 1. Ignoring the valve-point 

loading effects, some inaccuracy would result in the 

generation dispatch. 

To model the effects of non-smooth fuel cost functions, a 

recurring rectified sinusoidal contribution is added to the 

 
A, B, C, D & E Operating Point of Admission Valves 

Fig. 1. Incremental fuel cost curve for 5-valve steam 

turbine unit. 



Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II 

 492 

second order polynomial functions to represent the input-

output equation (2) as follows. The total fuel cost in terms 

of real power output can be expressed as [2], 

 

( ){ }min( ) sin $ / .2

1

N

g i i gi i gi i i gi gi

i

F P a b P c P d e P P hr
=

= + + + −∑  

  (2) 

 

Where, F(Pg): Total fuel cost ($/hr), N: Number of 

generators, ai, bi, ci, di, ei: Fuel cost coefficients of 

generator i, Pgi: Power generated by generator i and 
min

giP : 

Minimum power generation limit. 

Minimization of pollutant emission: The total emission 

of atmospheric pollutants such as Sulphur Oxides (SOx) 

and Nitrogen Oxides (NOx) from a fossil-fired thermal 

generating unit can be approximately modelled as a direct 

sum of a quadratic function and an exponential term of the 

active power output of the generating units and is 

expressed in the following form [29]. 
 

 ( ) exp ( ) / .2

1

N

g i i gi i gi i i gi

i

E P P P P lb hrα β γ η δ
=

= + + +∑  (3) 

 
Where, E(Pg): Total emission cost and αi, βi, γi, ηi, δi: 

Emission coefficients of generator i. 

 

2.2 Problem constraints 
 
Generation capacity constraint: For stable operation, real 

power output of each generator is restricted by lower and 

upper limits as follows [26]: 

 

 
min max , ,......1gi gi giP P P i N≤ ≤ =  (4) 

 
Where, 

min

giP : Minimum power generated and
max

giP : 

Maximum power generated.  

Power balance constraint: The total power generated 

must supply the total load demand and the transmission 

losses [22]. 
 

 
1

0
N

gi d loss

i

P P P
=

− − =∑   (5) 

 
Where, dP : Total load demand and lossP : Power loss in 

the transmission network. 

The real power loss lossP  can be calculated from 

Newton-Raphson load flow solution, which gives all bus 

voltage magnitudes and angles; it can be described as 

follows: 
 

 cos ( )2 2

1

2
LN

loss k i j i j i j

k

P g V V V V θ θ
=

 = + − − ∑  (6) 

 
Where i and j are the total number of buses, k is the kth 

network branch that connects bus i to bus j, NL is the 

number of transmission lines, Vi and Vj are the voltage 

magnitudes at bus i and j, gk is the transfer conductance 

between bus i and j, iθ and jθ are the voltage angles at 

bus i and j respectively [27].  

 

 

3. Implementation of NSGA-II  

and MNSGA-II 

 

The NSGA-II, MNSGA-II algorithms, Dynamic Crowding 

Distance (DCD), Controlled Elitism (CE) and MNSGA-II 

algorithm computational flow are described. 

 

3.1 NSGA-II 
 
NSGA-II is a fast and elitist MOEA and implements 

elitism for multi-objective search, using an elitism-

preserving approach. Elitism enhances the convergence 

properties towards the true Pareto-optimal set. A parameter-

less diversity preserving mechanism is adopted. Diversity 

and spread of solutions are guaranteed without the use of 

sharing parameters. When two solutions belong to the same 

Pareto-optimal front, the one located in a lesser crowded 

region of the front is preferred. Crowded comparison 

operator is used for good spread of solutions in the obtained 

non-dominated solutions [21]. 

 

3.2 MNSGA-II 
 
Although the crowded comparison operator ensures 

diversity along the non-dominated front in NSGA-II, the 

uniform diversity and lateral diversity are lost and hence 

leads to slowing down the search. These drawbacks are 

overcome by introducing a new diversity strategy called 

dynamic crowding distance (DCD) and controlled elitism 

(CE) into the NSGA-II algorithm for solving the CEED 

problem. Thus, the search algorithm needs diversity along 

the Pareto front and lateral to the Pareto front for better 

convergence [24, 25]. 

 

3.3 Dynamic crowding distance (DCD) 
 
NSGA-II uses crowding distance (CD) measure in 

population maintenance, to remove excess individuals in 

the non-dominated set (NDS) when the number of non-

dominated solutions exceeds population size. The 

individuals having lower value of CD are preferred over 

individuals with higher value of CD in removal process. 

Individual’s CD can be calculated as follows: 
 

 
1 1

1

1 objN

g g

i i i

gobj

CD f f
N

+ −
=

= −∑  (7) 

 
Where Nobj is the number of objectives, 1

g

if + is the 
thg objective of the 1

thi+  individual and 1

g

if −  is the 
thg objective of the 1

thi −  individual after sorting the 
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population according to CD value. The major drawback of 

CD is lack of uniform diversity in the obtained non-

dominated solutions as illustrated in [24, 25]. If normal CD 

is applied, some of the individuals helps to maintain 

uniform spread are removed.  

To overcome this problem, dynamic crowding distance 

(DCD) method is suggested in [19, 23]. The individuals 

CD are calculated only once during the process of 

population maintenance but the individuals DCD are 

varying dynamically during the process of population 

maintenance. In the DCD approach, one individual with 

lowest DCD value every time is removed and recalculates 

DCD for the remaining individuals. The individuals DCD 

are calculated as follows: 

 

 
log

1

i

i

i

CD
DCD

Var

=
 
 
 

 (8) 

 

Where iCD is calculated by eqn. (10), iVar  is based on 

 

 iVar  = ( )21 1

1 objN

g g

i i i

gobj

f f CD
N

+ −− −∑  (9) 

 

iVar  is the variance of CDs of individuals which are 

neighbours of the thi  individual. iVar  can give information 

about the difference variations of CD in different 

objectives. Therefore, if DCD is used in population 

maintenance, individuals in the NDS will have more 

chance to maintain. 

 

3.4 Controlled elitism (CE) 
 
A controlled elitism is incorporated in NSGA-II 

algorithm which will control the extent of exploitation 

rather than controlling the extent of exploration. In this 

approach, algorithm restricts the number of individuals 

in the current best non-dominated front adaptively and 

maintains a predefined distribution of number of 

individuals in each front. A geometric distribution is 

employed for this purpose, 
 

 11

1

j

j K

r
N N r

r

−−
=

−
 (10) 

 
Where K is the number of nondominated front, jN is the 

maximum number of allowed individuals in the jth front 

and r is the reduction rate. Since r < 1, the maximum 

allowable number of individual in the first front is the 

highest. Thereafter, each front is allowed to have an 

exponentially reducing number of solutions. It is clear that 

the new population obtained under the controlled NSGA-II 

procedure will generally be more diverse than that obtained 

by using the usual NSGA-II approach [19, 24]. 

 

3.5 MNSGA-II computational flow 
 

Step 1: Generate a random parent population of size N 

within control variable limits. 

Step 2: The population is sorted based on non-domination. 

Each population is assigned a rank equal to its non-

domination level. Calculate the crowding distance 

(CD) of populations in each non-domination level 

and sort populations in descending order of its CD. 

Step 3: Tournament selection: Select two individuals at 

random and then compare their front number and 

its crowding distance. Select the better one and 

copy it to the mating pool. 

Step 4: Create offspring population of size N by Simulated 

Binary Crossover (SBX) and polynomial mutation. 

The crossover probability of Pc = 0.85 and a 

mutation probability of Pm = 1/n (where n is the 

number of decision variables) are used. 

Step 5: Combine the parent population and offspring 

population. The size of combined population is 2N. 

Step 6: Perform non-dominated sorting to combined 

population and identify different fronts.  

Step 7: Applying Controlled Elitism (CE) concept, restricts 

the number of individuals in the current best non-

dominated front adaptively and maintains a 

predefined distribution of number of individuals 

in each front. 

Step 8: If the size of non-dominated set M is greater than 

the population size N, then remove M-N individuals 

from non-dominated set by using DCD based 

strategy, elsewhere, go to step 4. The new 

population obtained under the MNSGA-II will, in 

general be more diverse than that obtained by 

using NSGA-II approach. 

Step 9: Stopping rule: The process can be stopped after a 

fixed number of iterations. If the criterion is not 

satisfied then the procedure is repeated from step 

3 after creating the new population [25]. 

 

 

4. Performance Metrics 

 

To evaluate the performances of multi-objective 

optimization algorithms some measures of performances 

are essential. The existing performance metrics can be 

classified into three classes: metrics for convergence (γ), 

metrics for diversity (∆) and metrics for both convergence 

and diversity. These metrics are helpful for evaluating 

closeness of the obtained Pareto-front with the reference 

Pareto-front and evaluating diversity among non-dominated 

solutions [19]. 

 

4.1 Convergence metric or Distance metric (γ) 
 
γ evaluates average distance between non-dominated 
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solutions found and the actual Pareto-optimal front, as 

follows: 
 

 1

N

ii
d

N
γ ==
∑  (11) 

 
Where, id  is the distance between non-dominated 

solutions found and the actual Pareto-optimal front and N 

is the number of solutions in the front. The smaller the 

value of this metric, the better convergence toward the 

Pareto-optimal front [21, 24]. 

 

4.2 Spread metric or diversity metric (∆) 
 
∆ measures the extent of spread achieved among the 

obtained solutions. We calculate the Euclidean distance id  

between consecutive solutions in the obtained non-

dominated set of solutions and then we calculate the 

average d
−

 of these distances. Thereafter, from the 

obtained set of non-dominated solutions, we first calculate 

the extreme solutions and then we use the following metric 

to calculate the nonuniformity in the distribution: 
 

 

( )

1

1

1

N

f l i

i

f l

d d d d

d d N d

∆

− −

=
−

+ + −
=

+ + −

∑
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Where, fd and ld  are the Euclidean distances between 

the extreme solutions and the boundary solutions of the 

obtained non-dominated set. The parameter d
−

is the 

average of all distances id , i= 1, 2,……, (N -1), assuming 

that there are N solutions on the best non-dominated front 

and (N-1) consecutive distances. According to this metric, 

if an algorithm finds a smaller ∆ value is able to find a 

better diverse set of non-dominated solutions [21]. 

 

4.3 Inverted generational distance (IGD) 
 
IGD is designed for both convergence and diversity. 

IGD is calculated as shown below 
 

 
( )*

*

,
v P

d v P
IGD

P

∈=
∑

 (13) 

 
Where, P* is a set of uniformly distributed points in true 

Pareto-front, P is the non-dominated solutions obtained by 

MOEAs, d (v,P) is the minimum Euclidean distance 

between v and the point in P. A value of IGD equal zero 

indicates that P should be close to P* [19]. 

 

 

5. Results and Discussion 
 
The NSGA-II and MSGA-II algorithms are coded in 

MATLAB version 7.11 on a PC with Pentium-IV Intel (R) 

Core(TM) i3-2310M CPU operating at 2.10 GHz speed 

with 4 GB RAM. 

 

5.1 Test system description 

 

The NSGA-II and MNSGA-II algorithms are applied to 

IEEE 57-bus and IEEE 118-bus systems. The control 

parameters used for NSGA-II and MNSGA-II simulations 

are shown in Table 1. The fuel cost coefficients, emission 

coefficients, the lower power limits and the upper power 

limits are taken from [4, 17, 22] and [31]. Valve-point 

loading coefficients for IEEE 57-bus and IEEE 118-bus 

systems are appropriately assumed. In general, the population 

size of six times the number of decision variables is 

considered. The bus data and the line data are taken from [32]. 

Power flow calculations are made using MATPOWER 

software [32]. Control elitism rate (r) of MNSGA-II is 

assumed as 0.55. 

 

Table 1. Parameters setting of NSGA-II and MNSGA-II 

Parameters IEEE 57-bus IEEE 118-bus 

Population size 50 100 

Number of iteration 200 300 

Crossover probability, Pc 0.85 0.85 

Mutation probability, Pm 1/n (n=7) 1/n (n=19) 

Crossover index, ηc 5 5 

Mutation index, ηm 15 15 

 

5.2. Generation of reference Pareto-optimal front 
 
To compare the performance of NSGA-II and MNSGA-

II algorithms, a reference Pareto front obtained by using 

multiple runs of Real Coded Genetic Algorithm (RCGA) 

with weighted sum approach is considered. In reference 

Pareto-front generation, CEED problem is treated as single 

objective optimization problem by linear com-bination of 

objectives as follows: 

 

 Minimize ( )
1 2

1C w f w f= + −  (14) 

 

Where, w  is a weighing factor and the sum of 

weighting factor must be 1. 1
f  is the cost objective and 2

f  

is the emission objective. 

To get 50 non-dominated solutions, the algorithm is 

applied 50 times with varying weight factors as a uniform 

random number varying between 0 and 1 in each trial. 

Different population sizes and iteration numbers are 

selected depending upon the number of decision variables 

[24]. 

 

5.3. Simulation results 
 
Simulations are performed on IEEE 57-bus and IEEE 

118-bus systems with valve-point loading for the demand 

of 1250.8 MW and 3668 MW respectively. Best Pareto-

fronts obtained using NSGA-II and MNSGA-II for IEEE  
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Table 2. Extreme solutions for cost & emission with valve-point effect using NSGA-II, NSGA-II + DCD and NSGA-II + 

DCD + CE for IEEE 57-bus system for the demand of 1250.8 MW 

 NSGA-II NSGA-II + DCD NSGA-II + DCD + CE 

Power generation /loss (MW) Cost ($/hr) Emission (ton/hr) Cost ($/hr) Emission (ton/hr) Cost ($/hr) Emission (ton/hr) 

PG1 474.6765 289.8145 481.5357 284.5546 484.7586 293.2694 

PG2 10.0310 99.0938 10.0080 99.7148 10.0110 99.9849 

PG3 20.2225 138.4096 20.2204 139.3946 20.0000 139.9826 

PG4 10.0031 99.9033 10.0379 99.8978 10.0054 99.9974 

PG5 451.3608 283.7511 475.6759 284.6528 471.4728 283.4342 

PG6 10.0575 99.6018 10.0417 99.4584 10.0006 99.9999 

PG7 302.3281 263.9579 273.0187 266.5959 274.3374 258.3628 

Total Generation (MW) 1278.6795 1274.532 1280.538 1274.269 1280.586 1275.0312 

Total Loss (MW) 27.8795 23.732 29.7383 23.4689 29.7858 24.2312 

Cost ($/hr) 3971.6742 6697.938 3968.614 6710.511 3967.273 6717.0476 

Emission (ton/hr) 3.0565 1.8075 3.1188 1.8071 3.1169 1.8044 

 

Table 3. Extreme solutions for cost & emission with valve-point effect using NSGA-II, NSGA-II + DCD and  NSGA-II + 
DCD + CE for IEEE 118-bus system for the demand of 3668 MW 

 NSGA-II NSGA-II + DCD NSGA-II + DCD + CE 

Power generation /loss (MW) 
Cost 
($/hr) 

Emission 
(ton/hr) 

Cost 
($/hr) 

Emission 
(ton/hr) 

Cost 
($/hr) 

Emission 
(ton/hr) 

PG1 632.4282 311.7665 635.1131 296.3940 666.3349 292.2280 

PG2 74.2346 395.6262 79.3146 430.4591 59.2010 422.8407 

PG3 78.9754 85.1979 89.9439 80.7764 88.9817 88.9017 

PG4 299.0123 299.8937 296.7635 297.9175 298.7317 298.1514 

PG5 40.1179 396.7205 40.1746 387.6696 40.8803 397.4317 

PG6 4.3664 9.7513 1.6219 5.1443 9.1456 9.76915 

PG7 8.6015 17.7179 16.4082 15.6464 16.1480 17.6033 

PG8 30.0638 239.3228 31.6779 237.2091 30.7899 237.6172 

PG9 47.1728 49.8313 48.0858 44.0231 23.7377 36.2583 

PG10 153.6396 198.7127 153.7741 198.8161 98.8878 197.7378 

PG11 191.7919 190.3027 194.3582 196.3595 190.1879 182.4525 

PG12 394.5165 343.1486 393.6483 316.0513 395.6221 377.8778 

PG13 393.0788 382.3798 393.8913 399.6602 399.7133 399.2092 

PG14 599.6361 173.1232 546.3082 191.2300 598.7838 161.7066 

PG15 2.2816 2.9509 2.4881 4.4129 2.6834 2.7229 

PG16 670.5328 303.0844 678.6703 289.2167 672.3679 294.1894 

PG17 255.8913 285.1653 268.1255 299.3443 294.2095 294.5967 

PG18 5.2667 47.3609 6.4409 42.7302 5.1802 43.6933 

PG19 4.9966 39.5015 4.8769 39.6567 4.0648 20.9354 

Total Generation (MW) 3886.6042 3771.559 3881.685 3772.717 3895.652 3775.9231 

Total Loss (MW) 218.6042 103.5581 213.6853 104.7174 227.6515 107.9231 

Cost ($/hr) 11994.316 18538.93 11986.88 18589.15 11979.75 18643.362 

Emission (ton/hr) 14.3669 5.4869 13.5777 5.5613 14.8153 5.7154 

 

 

Fig. 3. Reference Pareto-front using RCGA and best 
obtained Pareto-front of NSGA-II, NSGA-II + DCD 
and NSGA-II+DCD+CE–IEEE 118–bus system 

 

Fig. 2. Reference Pareto-front using RCGA and best 
obtained Pareto-front of NSGA-II, NSGA-II + DCD 

and NSGA-II + DCD + CE – IEEE 57–bus system 
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57-bus and IEEE 118-bus systems are respectively shown 

in Fig. 2 and Fig. 3. For validation purposes, the reference 

Pareto-front generated using RCGA is given as well in the 

respective figures. Furthermore, the Pareto-fronts generated 

using NSGA-II, MNSGA-II and multiple runs Pareto-front 

obtained using RCGA are almost identical. 

Extreme solutions of Pareto-front, obtained out of ten 

trial runs by approaches using NSGA-II and MNSGA-II 

for IEEE 57-bus and IEEE 118-bus systems are reported in 

Table 2 and Table 3 respectively. In Table 2, optimum 

power obtained for the IEEE 57-bus are shown in the first 

seven rows, the eighth row represents the total generation, 

the ninth row represents the losses and the remaining two 

rows represent the total fuel cost and total emission. 

Similarly the results of other test systems are tabulated. 

The results show that NSGA-II and MNSGA-II algorithms 

are the effective tool for handling multi-objective optimi-

zation problem where multiple Pareto optimal solutions 

can be arrived in a single run with a best computational 

time compared to RCGA method. From the Tables 2 and 3, 

it can be concluded that, the NSGA-II with DCD and CE is 

capable of providing better results than the others for the 

CEED with valve-point effect problem. 

The statistical analysis like best, worst, mean and 

standard deviation results of multi-objective performance 

metrics are reported for IEEE 57-bus and IEEE 118-bus 

systems, in Table 4 and Table 5 respectively. It can be seen 

that, for most of the performance metrics, values obtained 

by NSGA-II with DCD is smaller than NSGA-II and 

NSGA-II with DCD and CE, which means that for NSGA-

II with DCD is giving better convergence and diversity 

consistently. 

In order to ensure better convergence, a search algorithm 

may need diversity in both aspects - along the Pareto-

optimal front and lateral to the Pareto-optimal front. For 

increasing number of generations, the number of fronts 

drops to one in case of NSGA-II with DCD and on the 

other hand, NSGA-II with DCD and CE approach maintains 

certain number of fronts. As a result of this, Controlled 

elitism will be helpful for maintaining lateral diversity in 

the solutions across various fronts. Since the lateral 

diversity characteristics of NSGA-II with DCD and CE is 

better than NSGA-II with DCD, there is a way for getting 

better extreme solution even though poor convergence.  

 
 

6. Conclusion 

 

In this paper, NSGA-II and MNSGA-II algorithms are 

applied to solve CEED problem with valve-point loading. 

The performance of NSGA-II and MNSGA-II algorithms 

are validated on the standard IEEE 57-bus and IEEE 118-

bus systems. RCGA algorithm is employed for generating 

reference Pareto-front by minimizing weighted sum of 

objectives. Best-obtained Pareto-front of NSGA-II and 

MNSGA-II are very close to the reference Pareto-front 

using RCGA for all the test systems. Pareto-front obtained 

by MNSGA-II show significant improvement on lateral 

diversity and uniform distribution of non-dominated 

solutions compared to NSGA-II. The performance of 

NSGA-II, NSGA-II with DCD and NSGA-II with DCD 

and CE are compared with respect to various statistical 

performance measures such as convergence metric, 

diversity metric and inverted generational distance metric. 

Table 4. Statistical results of performance measures – IEEE 57-bus system 

Measure Algorithm Best Worst Mean Standard deviation 

NSGA-II 30.3899 40.7000 35.7631 2.9537 

NSGA-II + DCD 34.4786 36.6809 35.3886 0.8552 γ 

NSGA-II + DCD + CE 27.8033 38.3118 31.8269 3.7204 

NSGA-II 0.3730 0.5912 0.5166 0.0710 

NSGA-II + DCD 0.1157 0.2214 0.1703 0.0323 ∆ 

NSGA-II + DCD + CE 0.9471 1.2757 1.1016 0.1126 

NSGA-II 0.0069 0.0092 0.0086 0.0006 

NSGA-II + DCD 0.0080 0.0084 0.0082 0.0001 IGD 

NSGA-II + DCD + CE 0.0092 0.0129 0.0103 0.0011 

 

Table 5. Statistical results of performance measures – IEEE 118-bus system 

Measure Algorithm Best Worst Mean Standard deviation 

NSGA-II 55.6728 66.9460 61.5347 3.2044 

NSGA-II + DCD 58.4553 66.5498 62.3828 2.3237 γ 

NSGA-II + DCD + CE 56.7404 69.5889 62.2870 5.5128 

NSGA-II 0.3384 0.5224 0.4401 0.0561 

NSGA-II + DCD 0.2105 0.3467 0.2574 0.0375 ∆ 

NSGA-II + DCD + CE 0.6356 0.9133 0.8153 0.0796 

NSGA-II 0.0120 0.0238 0.0210 0.0033 
IGD 

NSGA-II + DCD 0.0108 0.0237 0.0203 0.0035 
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By using the statistical performance measures, it can be 

concluded that the NSGA-II with DCD is better with 

respect to most of the multi-objective performance metrics. 
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