DOI QR코드

DOI QR Code

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams

고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리

  • Park, Chang Hee (Dept. of Architecture, Seoul National University) ;
  • Lee, Cheol Ho (Dept. of Architecture, Seoul National University) ;
  • Han, Kyu Hong (Dept. of Architecture, Seoul National University) ;
  • Kim, Jin Ho (Research Institute of Industrial Science & Technology) ;
  • Lee, Seung Eun (Research Institute of Industrial Science & Technology) ;
  • Ha, Tae Hyu (Research Institute of Industrial Science & Technology) ;
  • Kim, Jin Won (Research Institute of Industrial Science & Technology)
  • Received : 2012.11.12
  • Accepted : 2013.03.14
  • Published : 2013.04.27

Abstract

In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

본 연구에서는 공칭인장강도 800MPa를 지니는 고강도 강재로 조립된 H형강보의 횡지지거리에 따른 횡비틀림 좌굴강도를 현행 강구조설계기준(KBC 2009, AISC-LRFD 2010)을 바탕으로 평가하였다. 현행 기준은 고강도 강재와 응력도-변형도 특성이 확연히 다른 항복강도 350MPa 이하의 일반강을 전제로 정립된 것으로서, 고강도 강재에 대한 현행 기준의 적합성 여부가 우선 검토되어야 한다. 본 연구의 실험체는 모두 컴팩트 단면으로서 춤-폭비(H/B) 1.7을 갖는 실험군 A(상대적 뒤틀림 강성을 통한 모멘트전달이 작은 경우)와 2.7을 갖는 실험군 B(상대적으로 모멘트전달에 뒤틀림 강성 크게 기여하는 경우)로 구성하였다. 항복 이후의 응력도-변형도 특성의 영향을 받는 비탄성 횡좌굴 거동이 유발되도록 횡지지거리를 제어하면서 횡지지 구간 내에 균등모멘트가 작용하도록 가력하였다. 두 실험군 모두 현행 기준에 요구하는 강도를 충분히 상회하였고, 특히 뒤틀림 거동을 통한 모멘트전달이 크지 않은 실험군 A의 일부실험체는 소성설계에서 요구하는 수준의 회전능력까지 발휘하였다. 이들 실험결과는 현행 기준을 고강도 강재에 보수적으로 확대하여 적용할 수 있음을 보여준다. 실험결과를 좀더 심층적으로 분석하기 위해 일반강 및 고강도강의 응력도-변형도 특성을 고려한 H형강보의 횡지지거리에 따른 비탄성 횡좌굴강도 산정식을 유효접선계수를 반영하여 해석적으로 유도하였다. 이를 통해 소재의 항복강도와 탄성계수만을 고려하여 산정되는 현행 기준의 소성횡지지거리($L_p$) 제한식은, 항복참(yield plateau)없이 즉시 변형경화하는 고강도 강재에 적용하는 경우 보수적인 결과로 귀결됨을 입증하였다. 비탄성 횡좌굴 제어를 위한 횡지지거리는 소재의 항복강도 뿐만 아니라 항복 이후의 변형경화특성까지 반영하여 정의되는 타당하므로 이에 대한 개선의 필요성이 있다.

Keywords

References

  1. Haaijer, G. (1961) Economy of high strength steel structural members, Journal of Structural Division, ASCE, 87 (ST8), pp.1-23.
  2. McDermott, J.F. (1969) Plastic bending of A514 steel beams, Journal of Structural Division, ASCE, 95 (ST9), pp.1851-1871.
  3. 대한건축학회(2010) 건축구조기준 및 해설(KBC 2009), 기문당. AIK (2009) Korea building code and commentary - structural, Architectural Institute of Korea(in Korean).
  4. AISC (2010) Specification for Structural Steel Buildings, American Institue of Steel Construction, Chicago.
  5. 김종락 등(2011) 800MPa 고강도강 설계기준제정연구, 연구보고서, 한국강구조학회. Kim, J.R. et al.(2011) Research on Standardization of High-strength Steel, Research Report, KSSC, Korea (in Korean).
  6. 이철호, 한규홍, 박창희, 김진호, 이승은, 하태휴(2011) 국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험, 한국강구조학회논문집, 한국강구조학회, 제23권, 제4호, pp.417-428. Lee, C.H., Han, K.H., Park, C.H., Kim, J.H., Lee, S.E., and Ha, T.H. (2011) Local Buckling and Inelastic Behavior of 800MPa High-Strength Steel Beams, Journal of Korean Society of Steel Construction, KSSC, Vol. 23, No. 4. pp.417-428 (in Korean).
  7. 유정한, 김주우, 양재근, 강주원, 이동우(2012) 중심압축력을 받는 건축구조용 고성능강(HSA800) 용접각형강관 압축재의 국부좌굴, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.435-442. Yoo, J.H., Kim, J.W., Yang, J.G., Kang, J.W., and Lee, D.W. (2012) Local Buckling of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steels under Concentric Axial Loading, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 4. pp.435-442 (in Korean). https://doi.org/10.7781/kjoss.2012.24.4.435
  8. Rasmussen, K.J.R. and Hancock, G.J. (1992) Slenderness Limits for High Strength Steel Sections, Journal of Constructional Steel Research, Vol. 23, pp.73-96. https://doi.org/10.1016/0143-974X(92)90037-F
  9. Ricles, J.M., Sause, R. and Green, P.S. (1998) High-Strength Steel:Implications of Material and Geometric Characteristics On Inelastic Flexural Behavior, Journal of Engineering Structures, Vol. 20, No. 4-6, pp.323-335. https://doi.org/10.1016/S0141-0296(97)00024-2
  10. Green, P.G. (2000) The Inelastic Behavior of Flexural Members Fabricated from High Performance Steel, Ph.D. Dissertation, Lehigh University, Bethlehem, PA.
  11. Timoshenko, S.P. (1945) Theory of Bending, Torsion, and Buckling of Thin-Walled Members of Open Cross Section, Journal of the Franklin Institue, Vol. 239, No. 3,4,5, March, April, May 1945.
  12. Lay, M.G. and Galambos, T.V. (1965) Inelastic Steel Beams Under Uniform Moment, Journal of Structural Engineering, ASCE, Vol. 91, No. 5, pp.320-327.
  13. Galambos, T.V. (1968) Structural Members and Frames, Prentice-Hall, New York.
  14. Dibley, J.E. (1969) Lateral Torsional Buckling of I-Sections in Grade 55 Steel, Proceedings of Institution of Civil Engineers, Vol. 43, London, pp.599-627.
  15. 이철호, 김대경, 한규홍, 김진호, 이승은, 하태휴(2012) 고강도강재 단주의 압축강도 및 잔류응력 평가, 한국강구조학회논문집, 한국강구조학회, 제24권, 제1호, pp.23-34. Lee, C.H., Kim, D.K., Han, K.H., Kim, J.H., Lee, S.E., and Ha, T.H. (2012) Compressive strength and residual stress evaluation of stub columns fabricated of high strength steel, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 1. pp.23-34 (in Korean). https://doi.org/10.7781/kjoss.2012.24.1.023
  16. Lee, C.H., Han, K.H., Uang., C.M., Kim, D.K., Park, C.H., and Kim, J.H. (2012) Flexural Strength and Rotation Capacity of I-shaped Beams Fabricated from 800MPa Steel, ASCE, web-posted.
  17. Nadal, A. (1961) Theory of Flow and Fracture in Solids, Vol. 1, McGraw-Hill, New York.
  18. Donnell, L.H. (1942) Plastic Flow as an Unstable Process, Journal of Applied Mechanics, ASME, Vol. 9, June, 1942.
  19. Neal, B.G. (1950) The lateral Instability of Yielded Mild Steel Beams of Rectangular Cross-Section, Philosophical Transaction of the Royal Society of London, Series A, Mathematical and Physical Science, Vol. 242, No. 846, pp.197-242. https://doi.org/10.1098/rsta.1950.0001
  20. Galambos, T.V. (1963) Inelastic Lateral Buckling of Beams, Journal of Structural Engineering, ASCE, pp.217-241.

Cited by

  1. Inelastic Buckling Analysis of Frames with Semi-Rigid Joints vol.26, pp.3, 2014, https://doi.org/10.7781/kjoss.2014.26.3.143
  2. 고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계 vol.27, pp.4, 2013, https://doi.org/10.7781/kjoss.2015.27.4.411