References
- Baudel, H. M., Zaror, C. and C. A. M. de Abreu. 2005. Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind. Crops Prod. 21: 309-315. https://doi.org/10.1016/j.indcrop.2004.04.013
- Beneventi, D., Benesse, M., Carre, B., Julien Saint Amand, F., and L. Salgueiro. 2007. Modelling deinking selectivity in multistage flotation systems. Sep. Purif. Technol., 54: 77-87. https://doi.org/10.1016/j.seppur.2006.08.010
- Bolan, N. S. and V. P., Duraisamy. 2003. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 41: 533-555. https://doi.org/10.1071/SR02122
- Chantigny, M. H., Angers, D. A., and C. J. Beauchamps. 1999. Aggregation and organic matter decomposition in soils amended with de-inking paper sludge Soil Science Society of America Journal, 63: 1214-1221. https://doi.org/10.2136/sssaj1999.6351214x
- Chen, Y., R. R. Sharma-Shivappa, D. Keshwani, and C. Chen. 2007. Potential of agricultural residues and hay for bioethanol production. Appl. Biochem. Biotechnol 142: 276-290. https://doi.org/10.1007/s12010-007-0026-3
- Chun S. G., T. T. Hui, T. L. Keat, and B. Nicolas. 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy 35(9): 4025-4033. https://doi.org/10.1016/j.biombioe.2011.06.034
- Clarkson, W. W. and W. Xiao. 2000. Benchscale anaerobic bioconversion of newsprint and office paper. Water Sci. Technol. 41: 93-100.
- Deng, L., L. Xiao, Y. Tang, and X. Song. 2010. Effects of pretreatment on enzymatic hydrolysis of cellulose for waste paper. J. Beijing Forestry Univ. 32: 170-175 (in Chinese).
- Ferreira, S., A. P. Duarte, M. H. L. Ribeiro, J. A. Queiroz, and F. C. Domingues. 2009. Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal 45: 192-200. https://doi.org/10.1016/j.bej.2009.03.012
- Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol. November: 41-45.
- Gnansounou, E., A. Dauriat, and C. E. Wyman. 2005. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour. Technol. 96: 985-1002. https://doi.org/10.1016/j.biortech.2004.09.015
- Holtzapple, M. T. and J. E. Lundeen. 1992. R Sturgis Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX) Appl. Biochem. Biotechnol. 34/35: 5-21. https://doi.org/10.1007/BF02920530
- Ingram, L .O., H. C. Aldrich, C. C. Borges, T. B. Causey, A. Martínez, and F. Morales. 1999. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15(5): 855-866. https://doi.org/10.1021/bp9901062
- Iranmahboob, J., F. Nadim, and S. Monemi. 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy 22: 401-404. https://doi.org/10.1016/S0961-9534(02)00016-8
- Jannick, H., Schmidt, P. Holm, A. Merrild, and P. Christensen. 2007. Life cycle assessment of the waste hierarchy-A Danish case study on waste paper, Waste Management 27(11): 1519-1530. https://doi.org/10.1016/j.wasman.2006.09.004
- Karimi, K., S. Kheradmandinia, and M. J. Taherzadeh. 2006. Conversion of rice straw to sugars by diluteacid ydrolysis. Biomass and Bioenergy 30: 247-253. https://doi.org/10.1016/j.biombioe.2005.11.015
- Kuhad, R. C., G. Mehta, R. Gupta, and K. K. Sharma. 2010. Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy 34(8): 1189-1194. https://doi.org/10.1016/j.biombioe.2010.03.009
- Laopaiboon, P., A. Thani, and V. Leelavatcharamas. 2010. L. Laopaibooncid hydrolysis of sugarcane bagasse for lactic acid production ioresour. Technol. 101: 1036-1043.
- Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tenborg, K. Stenberg, G. Zacchi, and N. O. Nilvebrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
- Lavarack, B. P., G. J. Griffin, and D. Rodman. 2002. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy 23: 367-380. https://doi.org/10.1016/S0961-9534(02)00066-1
- Lay, J. J. and Y. J. Lee. 1999. T. Noike Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water. Res. 33(11): 2579-2586. https://doi.org/10.1016/S0043-1354(98)00483-7
- Lee, Y. Y., Z. Wu, and R. W. Torget. 2000. Modeling of countercurrent shrinkingbed reactor in dilute-acid hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71: 29-39. https://doi.org/10.1016/S0960-8524(99)00053-X
- Li A., B. Antizar-Ladislao, and M. Khraisheh. 2007. Bioconversion of municipal solid waste to glucose for bioethanol production. Bioprocess. Biosyst. Eng. 30: 189-196. https://doi.org/10.1007/s00449-007-0114-3
- Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066
- Li, S., X. Zhang, and J. M. Andresen. 2012. Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 92: 84-88. https://doi.org/10.1016/j.fuel.2011.07.012
- Mamma, D., P. Christakopoulos, D. Koullas, D. Kekos, B. J. Macris, and E. Kouki. 1995. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy 8(2): 99-103. https://doi.org/10.1016/0961-9534(95)00006-S
- Mathew P. and K. G. R. Nair. 2006. Ensilation of shrimp waste by Lactobacillus fermentum. Fish Technol. 43: 59-64.
- Mckinney, R. W. J. 1995. Technology of paper recycling, 1st ed., Chapman & Hall, Glasgow, UK. pp: 130-156.
- Park, E. Y., P. N. Anh, and N. Okuda. 2004. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae, Bioresour. Technol. 93: 77-83. https://doi.org/10.1016/j.biortech.2003.08.017
- Park, E. Y., Y. Ikeda, and N. Okuda. 2002. Empirical evaluation of cellulase on enzymatic hydrolysis of waste OA paper. Biotechnol. Bioprocess Eng. 7: 1-6. https://doi.org/10.1007/BF02935871
- Rahman, S. H. A., J. P. Choudhury, A. L. Ahmad, and A. H. 2007. Kamaruddin Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technol. 98: 554-559.
- Ritter, G. J., R. M, Seborg. and R. L. Mitchell. 1932. Factors Affecting quantitative determination of lignin by 72 per cent sulfuric acid method. Ind. Eng. Chem. Anal. Ed. 4(2): 202∼204. https://doi.org/10.1021/ac50078a017
- Rodriguez-Chong, A., J. A. Ramirez, G. Garrote, and M. Vazquez. 2004. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J. Food Eng. 61: 143-152. https://doi.org/10.1016/S0260-8774(03)00080-3
- Romero, I., E. Ruiz, E. Castro, and M. Moya. 2010. Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design 88: 633-640. https://doi.org/10.1016/j.cherd.2009.10.007
- Romero, I., S. Sanchez, M. Moya, E. Castro, E. Ruiz, and V. Bravo. 2007. Fermentation of olive tree pruning acidhydrolysates by Pachysolen tannophilus. Biochem Eng. J. 36: 108-115. https://doi.org/10.1016/j.bej.2007.02.006
- Saeman, J. F., J. L. Bubl, and E. E. Harris. 1945. Quantitative Saccharification of Wood and Cellulose. Ind. Eng. Chem. Anal. Ed. 17 (1): 35-37. https://doi.org/10.1021/i560137a008
- Sun, Y. and J. J. Cheng. 2005. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96: 1599-1606. https://doi.org/10.1016/j.biortech.2004.12.022
- Teghammar, A., J. Yngvesson, M. Lundin, M. J. Taherzadeh, and I. S. Horváth. 2010. Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 101: 1206-1212. https://doi.org/10.1016/j.biortech.2009.09.029
- Torget, R. W., J. S. Kim, and Y. Y. Lee. 2000. Fundamental aspects of dilute acid hydrolysis of hardwood carbohydrates: cellulose hydrolysis. Ind. Eng. Chem. Res. 39: 2817-2825. https://doi.org/10.1021/ie990915q
- Um, B. H. and S. H. Bae. 2011. Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse. Korean J. Chem. Eng. 28(5): 1172-1176. https://doi.org/10.1007/s11814-011-0058-9
- Wiselogel, A., S. Tyson, and D. Johnson. 1996. Biomass feedstock resources and composition. In: Wyman, C.E. (Ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC: 105-118.
- Xiao, W. and W. W. Clarkson. 1997. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8: 61-66. https://doi.org/10.1023/A:1008297211954
- Yanez, R., J. L. Alonso, and J. C. Parajo. 2004. Production of hemicellulosic sugars and glucose from residual corrugated cardboard, Process Biochem. 39: 1543-1551. https://doi.org/10.1016/S0032-9592(03)00283-8
- Zhu, J. Y., F. Tan, K. L.Scallon, Y. Zhao, and Y. Deng. 2005. Deinking selectivity (Zfactor): a newparameter to evaluate to evaluate the performance of flotation deinking process. Sep. Purif. Technol. 43 : 33-41 https://doi.org/10.1016/j.seppur.2004.09.011
Cited by
- Dark Fermentative Hydrogen Gas Production from Lime Treated Waste Paper Towel Hydrolysate 2018, https://doi.org/10.1007/s12649-017-9957-2
- Hydrogen gas production from waste paper by sequential dark fermentation and electrohydrolysis vol.41, pp.19, 2016, https://doi.org/10.1016/j.ijhydene.2015.12.087
- Glucose and 5-hydroxymethylfurfural production from cellulosic waste by sequential alkaline and acid hydrolysis vol.96, 2016, https://doi.org/10.1016/j.renene.2016.04.082
- Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus vol.217, 2018, https://doi.org/10.1016/j.fuel.2017.12.108
- Enhanced Bioethanol Production from Waste Paper Through Separate Hydrolysis and Fermentation pp.1877-265X, 2018, https://doi.org/10.1007/s12649-018-0400-0
- Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production pp.1520-5703, 2019, https://doi.org/10.1080/01614940.2018.1479503