DOI QR코드

DOI QR Code

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics

RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향

  • Kim, In Young (Department of Material Science and Engineering, Chonnam National University) ;
  • Shin, Seung Wook (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Min Sung (Department of Material Science and Engineering, Chonnam National University) ;
  • Yun, Jae Ho (Photovoltaic Research Group, Korea Institute of Energy Research) ;
  • Heo, Gi Seok (Korea Institute of Industrial Technology) ;
  • Jeong, Chae Hwan (Korea Institute of Industrial Technology) ;
  • Moon, Jong-Ha (Department of Material Science and Engineering, Chonnam National University) ;
  • Lee, Jeong Yong (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Jin Hyoek (Department of Material Science and Engineering, Chonnam National University)
  • Received : 2013.01.17
  • Accepted : 2013.02.27
  • Published : 2013.03.27

Abstract

ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Keywords

References

  1. K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102(1), 1 (1983). https://doi.org/10.1016/0040-6090(83)90256-0
  2. Z. C. Jin, I. Hamberg and C. G. Granqvist, J. Appl. Phys., 64(10), 5117 (1988). https://doi.org/10.1063/1.342419
  3. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech and M. Wuttig, J. Appl. Phys., 95(4), 1911 (2004). https://doi.org/10.1063/1.1641524
  4. B. D. Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim and S. Y. Lee, J. Cryst. Growth, 309(2), 128 (2007). https://doi.org/10.1016/j.jcrysgro.2007.09.014
  5. A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells, 93(2), 193 (2009). https://doi.org/10.1016/j.solmat.2008.09.039
  6. D. Byrne, E. McGlynn, K. Kumar, M. Biswas, M. O. Henry and G. Hughes, Cryst. Growth Des., 10(5), 2400 (2010). https://doi.org/10.1021/cg100231u
  7. S. W. Shin, S. M. Pawar, T. W. Kim, J. H. Moon and J. H. Kim, J. Mater. Res., 24(02), 441 (2009). https://doi.org/10.1557/JMR.2009.0042
  8. S. W. Shin, I. Y. Kim, G. H. Lee, G. L. Agawane, A. V. Mohokar, G. S. Heo, J. H. Kim and J. Y. Lee, Cryst. Growth Des., 11(11), 4819 (2011). https://doi.org/10.1021/cg2005387
  9. X. Zhang, H. Ma, Q. Wang, J. Ma, F. Zong, H. Xiao, F. Ji and S. Hou, Phys. B, (Amsterdam, Neth.), 364(1-4), 157 (2005). https://doi.org/10.1016/j.physb.2005.04.005
  10. T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura and Y. Hamakawa, J. Appl. Phys., 89(12), 8327 (2001). https://doi.org/10.1063/1.1366655
  11. Y. K. Hyun, J. W. Choi and D. H. Lee, Thin Solid Films, 302(1-2), 116 (1997). https://doi.org/10.1016/S0040-6090(96)09568-5
  12. M. I. Medina-Montes, H. Arizpe-Chavez, L. A. Baldenegro-Perez, M. A. Quevedo-Lopez and R. Ramírez-Bon, J. Electron. Mater., 41(7), 1962 (2012). https://doi.org/10.1007/s11664-012-1994-9
  13. L. J. Meng and M. P. dos Santos, Vacuum, 46(8-10), 1001 (1995). https://doi.org/10.1016/0042-207X(95)00092-5
  14. R. E. Marotti, D. N. Guerra, C. Bello, G. Machado and E. A. Dalchiele, Sol. Energy Mater. Sol. Cells, 82(1-2), 85 (2004). https://doi.org/10.1016/j.solmat.2004.01.008
  15. H. Shim, M. Sakuraba and J. Murota, Thin Solid Films, 508(1-2), 36 (2006). https://doi.org/10.1016/j.tsf.2005.07.327
  16. C S Son, Kor. J. Mater. Res., 21(3), 144-148 (2011). https://doi.org/10.3740/MRSK.2011.21.3.144
  17. K. Bahedi, M. Addou, M. El Jouad, Z. Sofiani, H. El Oauzzani and B. Sahraoui, Appl. Surf. Sci., 257(18), 8003-8005 (2011). https://doi.org/10.1016/j.apsusc.2011.04.072
  18. S. W. Shin, G. L. Agawane, I. Y. Kim, Y. B. Kwon, I. O. Jung, M. G. Gang, A. V. Moholkar, J. H. Moon, J. H. Kim and J. Y. Lee, Appl. Surf. Sci., 258(12), 5073-5079 (2012). https://doi.org/10.1016/j.apsusc.2012.01.109
  19. S. W. Shin, H. S. Park, J. H. Moon, T. W. Kim and J. H. Kim, J. Kor. Inst. Met. & Mater., 46(4), 249-256 (2008).
  20. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng and H. Ma, J. Cryst. Growth, 274(3-4), 474 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.037
  21. K. H. Ri, Y. Wang, W. L. Zhou, J. X. Gao, X. J. Wang and J. Yu, Appl. Surf. Sci., 258(4), 1283-1289 (2011). https://doi.org/10.1016/j.apsusc.2011.07.022
  22. HYPERLINK "http://www.chalcogen.infim.ro/805_Vanalakar.pdf" S. A. Vanalakar, S. S. Mali, M. P. Suryavanshi, P. S. Patil Digest J. Nanomater. Biostruct., 5, 805 (2010).