DOI QR코드

DOI QR Code

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Gwang Sun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ko, Young Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2012.11.27
  • Accepted : 2013.01.18
  • Published : 2013.03.27

Abstract

$Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

Keywords

References

  1. X. Wu, R. G. Dhere, D. S. Albin, T. A. Gessert, C. DeHart, J. C. Keane, A. Duda, T. J. Coutts, S. Asher, D. H. Levi, H. R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery and P. Sheldon, in Proceedings of the NCPV Program Review Meeting (Lakewood, Colorado, Oct. 2001) p. 1.
  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovoltaics: Research and Applications, 19, 894 (2011). https://doi.org/10.1002/pip.1078
  3. S. M. Gallego, L. B. Pena, R. A. Barcia, C. E. Azpilicueta, M. F. Lannone, E. P. Rosales, M. S. Zawoznik, M. D. Groppa and M. P. Benavides, Environ Exp. Bot., 83, 33 (2012). https://doi.org/10.1016/j.envexpbot.2012.04.006
  4. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Cell., 95, 1421 (2011).
  5. K. H. Kim and I. Amal, Electron. Mater. Lett., 7, 225 (2011). https://doi.org/10.1007/s13391-011-0909-x
  6. S. Nakamura, T. Maeda, and T. Wada, Jpn. J. Appl. Phys. 50, 6 (2011).
  7. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, in Proceedings of the Photovoltaic Science and Engineering Conferences (Miyazaki, Japan, Nov. 1996) p 745.
  8. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorove and D. B. Mitzi, Prog. Photovoltaics: Research and Applications, 20, 6 (2012). https://doi.org/10.1002/pip.1160
  9. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorove and D. B. Mitzi, Energ. Environ. Sci., 5, 7060 (2012). https://doi.org/10.1039/c2ee00056c
  10. B. Shin, K. Wang, O. Gunawan, K. B. Reuter, S. J. Chey, N. A. Bojarczuk, T. Todorove, D. B. Mitzi and S. Guha, in Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference(Seattle, WA, June 2011) p. 19.
  11. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich and R. Noufi, Sol. Energy Mater. Sol. Cells, 101, 154 (2012). https://doi.org/10.1016/j.solmat.2012.01.008
  12. R. B. V. Chalapathy, G. S. Jung and B. T. Ahn, Sol. Energy Mater. Sol. Cells, 95, 3216 (2011). https://doi.org/10.1016/j.solmat.2011.07.017
  13. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, Sol. Energy Mater. Sol. Cells, 49, 407 (1997). https://doi.org/10.1016/S0927-0248(97)00119-0
  14. Y. Wang and H. Gong, J. Alloys Compd., 509, 9627 (2011). https://doi.org/10.1016/j.jallcom.2011.07.041
  15. Z. S. Chen, L. Han, L. Wan, C. H. Zhang, H. H. Niu and J. Z. Xu, Appl. Surf. Sci., 257, 8490 (2011). https://doi.org/10.1016/j.apsusc.2011.04.139
  16. R. Juskenas, S. Kanapeckaite, V. Karpavitciene, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis and G. Niaura, Sol. Energy Mater. Sol. Cells, 101, 277 (2012). https://doi.org/10.1016/j.solmat.2012.02.007
  17. Z. H. Su, C. Yan, K.W. Sun, Z.L. Han, F.Y. Liu, J. Liu, Y.Q. Lai, J. Li, and Y.X. Liu, Appl. Surf. Sci. 258, 7678- 7682 (2012). https://doi.org/10.1016/j.apsusc.2012.04.120
  18. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja and E. Mellikov, Thin Solid Films, 519, 7394 (2011). https://doi.org/10.1016/j.tsf.2011.01.388
  19. A. Redinger, D.M. Berg, P.J. Dale, and S. Siebentritt, J. Amer. Chem. Soc. 133, 3320-3323 (2011). https://doi.org/10.1021/ja111713g
  20. P. M. P. Salome, P. A. Fernandes and A. F. da Cunha, Thin Solid Films, 517, 2531 (2009). https://doi.org/10.1016/j.tsf.2008.11.034
  21. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni and E. S. Aydil, J. Appl. Phys., 111, 9 (2012).
  22. G. B. Sakr, I. S. Yahia, M. Fadel, S. S. Fouad and N. Romcevic, J. Alloys Compd., 507, 557 (2010). https://doi.org/10.1016/j.jallcom.2010.08.022

Cited by

  1. thin-film solar cells by control of ZnS precursor-layer thickness vol.24, pp.3, 2015, https://doi.org/10.1002/pip.2693
  2. Low temperature crystallization of Cu2ZnSnSe4 thin films using binary selenide precursors vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7773-x