DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles

알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질

  • Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program) ;
  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • 오창섭 (한국과학기술정보연구원) ;
  • 한창석 (호서대학교 국방과학기술학과)
  • Received : 2012.12.26
  • Accepted : 2013.02.21
  • Published : 2013.03.27

Abstract

The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.

Keywords

References

  1. K. Matsunaga, S. Ochiai, K. Osamura, Y. Waku and T. Yamamura, J. Jpn. Inst. Light Metals, 43, 219 (1993). https://doi.org/10.2464/jilm.43.219
  2. S. K. Park, S. G. Shin, and J. H. Lee, Kor. J. Mater. Res, 13, 64 (2003). https://doi.org/10.3740/MRSK.2003.13.1.064
  3. H. Kwon, M. Leparoux and J. M. Heintz, Met. Mater. Int., 17, 755 (2011). https://doi.org/10.1007/s12540-011-1010-6
  4. W. D. Fei, M. Hu and C. K. Yao, Mater. Sci. Eng., 356, 17 (2003). https://doi.org/10.1016/S0921-5093(02)00827-4
  5. H. Toda, and T. Kobayashi, Metall. Mater. Trans. A, 27, 2013 (1996). https://doi.org/10.1007/BF02651950
  6. K. Suzuki, X. S. Huang and A. Watazu, Mater. Sci. Forum, 544/545, 443 (2007).
  7. G. A. Edwards, J. Y. Yao, M. J. Couper and G. L. Dunlop, Aluminium Alloys, Their Physical and Mechanical Properties (ICAA3), p.525, ed. L. Amberg, O. Lohne, E. Nes and N. Ryum, Norwegian Institute of Technology, (1992).
  8. T. Hikosaka, T. Imai, T. Kobayashi and H. Toda, J. Jpn. Inst. Light Metals, 51, 86 (2001). https://doi.org/10.2464/jilm.51.86
  9. J. Salmones, J. A. Galicia and J. A. Wang, J. Mater. Sci. Lett., 19, 1033 (2000). https://doi.org/10.1023/A:1006734902538
  10. M. W. Lock and D. S. Bin, NDT '99, 295 (1999).
  11. B. I. Kim and H. Yoshinaga, J. Kor. Inst. Met. & Mater., 30, 640 (1992).
  12. B. I. Kim and H. Nakashima, J. Kor. Soc. Heat Treat., 5, 201 (1992).
  13. I. Dutta, S. M. Allen, and J. L. Hafley, Metall. Trans. A, 22A, 2553 (1991).
  14. L. F. Mondolfo, Mater. Sci. Tech., 5, 118 (1989). https://doi.org/10.1179/026708389792209657
  15. T. G. Nieh, Metall. Trans. A, 15A, 139 (1984).
  16. R. S. Mishra, T. R. Bieler and A. K. Mukherjee, Acta Mater., 45, 561 (1997). https://doi.org/10.1016/S1359-6454(96)00194-2