DOI QR코드

DOI QR Code

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon (Department of Electrical & Computer Engineering, Texas A&M University) ;
  • Kwak, Sangshin (School of Electrical and Electronics Engineering, Chung-ang University) ;
  • Toliyat, Hamid A. (Department of Electrical & Computer Engineering, Texas A&M University)
  • Received : 2013.01.13
  • Accepted : 2013.02.15
  • Published : 2013.03.31

Abstract

In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Keywords

References

  1. A. M. El-Refaie, IET Electric Power Appl. 5, 59 (2011). https://doi.org/10.1049/iet-epa.2009.0117
  2. H. Murakami, Y. Honda, and H. Kiriyama, in Proc. IEEE Industry Applications Society Annual Meeting, Phoenix, USA (1999) pp. 840-845.
  3. Y. Kim, J. Magnetics 17, 280 (2012). https://doi.org/10.4283/JMAG.2012.17.4.280
  4. W. L. Soong, IEEE Trans. Ind. Appl. 38, 1251 (2002). https://doi.org/10.1109/TIA.2002.803013
  5. T. M. Jahns and V. Caliskan, IEEE Trans. Ind. Appl. 35, 1347 (1999). https://doi.org/10.1109/28.806049
  6. P. Niazi, H. A. Toliyat, D. Cheong, and J. Kim, IEEE Trans. Ind. Appl. 43, 542 (2007). https://doi.org/10.1109/TIA.2006.890033
  7. L. Jian, G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, Progress In Electromagnetics Research 113, 351 (2011). https://doi.org/10.2528/PIER10121603
  8. H. Jussila, P. Salminen, M. Niemela, and J. Pyrhonen, in Proc. Power Engineering, Energy and Electrical Drives, Terremolinos, Spain (2007) pp. 191-194.
  9. P. M. Lindh, H. K. Jussila, M. Niemela, A. Parviainen, and J. Pyrhonen, IEEE Trans. Magn. 45, 2085 (2009). https://doi.org/10.1109/TMAG.2008.2011643
  10. L. Chong and M. F. Rahman, IET Electric Power Appl. 4, 249 (2010). https://doi.org/10.1049/iet-epa.2009.0119
  11. P. Sergeant, F. D. Belie, and J. Melkebeek, IEEE Trans. Magn. 45, 1756 (2009). https://doi.org/10.1109/TMAG.2009.2012809
  12. K. I. Laskaris and A. G. Kladas, IEEE Trans. Ind. Electron. 57, 138 (2010). https://doi.org/10.1109/TIE.2009.2033086
  13. D. G. Dorrell, M. Hsieh, M. Popescu, L. Evans, D. A. Station, and V. Grout, IEEE Trans. Ind. Electron. 58, 3741 (2011). https://doi.org/10.1109/TIE.2010.2089940
  14. A. M. EL-Refaie and T. M. Jahns, IEEE Trans. Energy Conversion 23, 53 (2008). https://doi.org/10.1109/TEC.2007.905053
  15. M. Barcaro, A. Faggion, L. Sgarbossa, N. Bianchi, and S. Bolognani, IET Electric Power Appl. 4, 537 (2010).
  16. A. S. Abdel-Khalik, S. M. Gadoue, M. I. Masoud, and B. W. Wiliams, IEEE Trans. Energy Conversion 26, 501 (2011). https://doi.org/10.1109/TEC.2010.2093139

Cited by

  1. Numerical Analysis on Iron Loss and PM Loss of Permanent Magnet Synchronous Motor Considering the Carrier Harmonics vol.18, pp.2, 2013, https://doi.org/10.4283/JMAG.2013.18.2.216
  2. Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.544
  3. Design Optimization With Multiphysics Analysis on External Rotor Permanent Magnet-Assisted Synchronous Reluctance Motors vol.33, pp.1, 2018, https://doi.org/10.1109/TEC.2017.2751300