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I. INTRODUCTION 
 

An autonomous mobile robot is an intelligent robot that 
performs tasks by interacting with the surrounding 
environment through sensors without human control. 
Unlike general manipulators in a fixed working environ-
ment [1, 2], intelligent processing in a flexible and 
variable working environment is required. Robust behavior 
by autonomous robots requires that the uncertainty in such 
environments be accommodated by a robot control system. 
Therefore, studies on fuzzy rule-based control are 
attractive in this field. Fuzzy logic is particularly well 
suited for implementing such controllers due to its cap-
abilities for inference and approximate reasoning under 
uncertainty [3-5]. Many fuzzy controllers proposed in the 
literature utilize a monolithic rule-based structure. That is, 

the precepts that govern the desired system behavior are 
encapsulated as a single collection of if-then rules. In most 
instances, these rules are designed to carry out a single 
control policy or goal. However, mobile robots must be 
capable of achieving multiple goals whose priorities may 
change with time in order to achieve autonomy. Thus, 
controllers should be designed to realize a number of task-
achieving behaviors that can be integrated to achieve 
different control objectives. This requires formulation of a 
large and complex set of fuzzy rules. In this situation, a 
potential limitation to the utility of the single command 
fuzzy controller becomes apparent. Since the size of the 
complete single command rule-base increases exponentially 
with the number of input variables [6, 7], multi-input 
systems can potentially suffer degradations in real-time 
response. This is a critical issue for mobile robots operating 
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in dynamic surroundings [8, 9]. Hierarchical rule structures 

can be employed to overcome this limitation by reducing 

the rate of increase to linear [1, 10]. 

This paper describes a hierarchical behavior-based 

control architecture. It is structured as a hierarchy of fuzzy 

rule bases that enables the distribution of intelligence 

amongst special purpose fuzzy-behaviors. This structure is 

motivated by the hierarchical nature of the behavior as 

hypothesized in ethological models. A fuzzy coordination 

scheme is also described that employs weighted decision 

making based on contextual behavior activation. Perfor-

mance is demonstrated by simulation that highlights 

interesting aspects of the decision making process that arise 

from behavior interaction. 

First, this paper briefly introduces the operation of each 

command and the fuzzy controller for navigation system in 

Section II. Section III explains the behavior hierarchy based 

on fuzzy logic. In Section IV, the experimental results to 

verify the efficiency of the system are shown. Finally, 

Section V concludes this work and outlines possible future 

related work. 

 

II. SYSTEM MODEL AND METHODS 

 

The proposed fuzzy controller is as shown in Fig. 1. We 

define three major navigation goals: target orientation, 

obstacle avoidance, and rotation movement.  Each goal is 

represented as a cost function. Note that the fusion process 

has a structure of forming a cost function by combining 

several cost functions using weights. In this fusion process, 

we infer each weight of the command by a fuzzy algorithm, 

which is a typical artificial intelligence scheme. With the 

proposed method, the mobile robot navigates intelligently 

by varying the weights depending on the environment and 

selects a final command to keep minimum variation of the 

orientation and velocity according to the cost function [11-

15]. 

 

∑

θ

 

Fig. 1. Overall structure of the navigation algorithm. 

A. Goal Seeking Command  
 

The orientation command of a mobile robot is generated 

as the nearest direction to the target point. The command is 

defined as the distance to the target point when the robot 

moves to the orientation, θ, and the velocity, v . Therefore, 

the cost function is defined as Eq. (1).  
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reduction ratio of the rotational movement. 

 

B. Avoiding Obstacle Command 
 

We represent the cost function for obstacle-avoidance as 

the shortest distance to an obstacle based upon the sensor 

data in the form of a histogram. The distance information is 

represented as a form of second order energy and 

represented as a cost function by inspecting it for all θ, as 

shown in Eq. (2). 
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To navigate in a dynamic environment to the goal, a 

mobile robot should recognize the dynamic variation and 

react to it. For this, the mobile robot extracts the variation in 

the surrounding environment by comparing the past and the 

present. For continuous movement of a robot, the 

transformation matrix of a past frame w.r.t. the present 

frame should be clearly defined. 

In Fig. 2, the vector, 
α

1−n
P  is defined as the position 

vector of the mobile robot w.r.t. the {n-1} frame, and 
α

n
P  

is defined as the vector w.r.t. the {n} frame. Then, we obtain 

the relation between 
α

1−n
P  and 

α

n
P  as follows: 
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Fig. 2. Transformation of the frame. 



J. lnf. Commun. Converg. Eng. 11(1): 24-29, Mar. 2013 

http://dx.doi.org/10.6109/jicce.2013.11.1.024 26

        1 1 1
( )n n

n n n n
P R P d

α α

− − −

= −
.           (3) 

Here, 
n

n
R

1−
 is the rotation matrix from {n-1} to the {n} 

frame, and 
n

n
d

1−
 is the translation matrix from the {n-1} 

frame to the {n} frame.  

According to Eq. (3), the environment information 

measured in the {n-1} frame can be represented as w.r.t. the 

{n} frame. Thus, if 
1n

W
−

 and 
n

W  are the environment 

information in the polar coordinates measured in the {n-1} 

and {n} frames, respectively, we can represent 
1n

W
−

 w.r.t. 

the {n} frame, and extract the moving object using Eq. (4) 

in the {n} frame. 
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 transformed into the {n} 

frame. 

 

C. Minimizing Rotation Command 
 

Minimizing rotational movement aims to rotate the 

wheels smoothly by restraining rapid motion. The cost 

function is defined as the minimum at the present 

orientation and is defined as the second order function in 

terms of the rotation angle, θ, as in Eq. (5). 
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The command represented as the cost function has three 

different goals to be satisfied at the same time. Each goal 

contributes differently to the command by a different weight, 

as shown in Eq. (6). 
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III. BEHAVIOR HIERARCHY BY FUZZY LOGIC 

 

A. Behavior Decision 
 

Primitive behaviors are low-level behaviors that typically 

take the inputs from the robot’s sensors and send the outputs 

to the robot’s actuator. This forms a nonlinear map between 

them. Composite behaviors make up a  map between the 

sensory input and/or the global constraints and the degree of 

applicability (DOA) of the relevant primitive behaviors. The 

DOA is the measure of the instantaneous level of the 

activation of a behavior. The primitive behaviors are 

weighted by the DOA and aggregated to form the composite 

behaviors. This is a general form of behavior fusion that can 

degenerate to behavior switching for DOA = 0 or 1 [16, 17].  

At a primitive level, behaviors are synthesized as fuzzy 

rule bases, i.e., a collection of fuzzy if-then rules. Each 

behavior is encoded with a distinct control policy governed 

by fuzzy inference. If x and y  are the input and output 

universes of the discourse of a behavior with a rule-base of 

size n, the usual fuzzy if-then rule takes the following form: 

 

i i
IF x is A THEN y is B ,            (7) 

where x  and y  represent the input and output fuzzy 

linguistic variables, respectively, and 
i

A  and 
i

B  (I = 1…n) 

are the fuzzy subsets representing the linguistic values of x  

and y . Typically, x  refers to the sensory data and y  to 

the actuator control signals. The antecedent and the 

consequent can also be a conjunction of the propositions (e.g., 

IF 
1
x  is 

,1i
A  AND…

n
x  is 

,i n
A  THEN…) 

At the composition level, the DOA is evaluated using a 

fuzzy rule base in which the global knowledge and 

constraints are incorporated. An activation level (threshold) 

at which the rules become an application is applied to the 

DOA giving the system more degrees of freedom. The DOA 

of each primitive behavior is specified in the consequent of 

the applicability rules of the form:  

i j i
IF x is A THEN is Dα ,      (8) 

where x  is typically the global constraint, [0,1]
j

α ∈  is the 

DOA and 
i

A  and 
i

D  are the fuzzy set of the linguistic 

variables describing them. As in the former case, the 

antecedent and the consequent can also be a conjunction of 

the propositions.  

 

B. Inference System 
 

We infer the weights of Eq. (6) by means of a fuzzy 

algorithm. The main reason for using a fuzzy algorithm is 

that it is easy to reflect human intelligence into the robot 

control. A fuzzy inference system is developed through the 

process of setting each situation, developing fuzzy logic 

with the proper weights, and calculating the weights for the 

commands. 

 

 

 

Fig. 3. Structure of the fuzzy inference system. 
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Table 1. Inference rule of each weight system 

Inference Velocity 
Distance 

Near Middle Far 

ω1 Slow Low Very high Very high

 Middle Low High Very high

 Fast Very low Middle High 

ω2 Slow Very high Low Very low 

 Middle Very high Low Very low 

 Fast High Low Very low 

ω3 Slow Low Low Middle 

 Middle Very low Middle High 

 Fast Very low Middle Very high

 

 

Fig. 3 shows the structure of a fuzzy inference system. 

We define the circumstances and the state of a mobile 

robot as the inputs of a fuzzy inference system and infer 

the weights of the cost functions. The inferred weights 

determine the cost function to direct the robot and 

determine the velocity of rotation. For control of the 

mobile robot, the results are transformed into the joint 

angular velocities by the inverse kinematics of the robot. 

Table 1 shows the output surface of the fuzzy inference 

system for each fuzzy weight subset using the inputs and 

the output. The control inference rule is: 
1

ω , the fuzzy 

logic controller of the seeing goal; 
2

ω ,  the fuzzy logic 

controller of avoiding the obstacle; and 
3

ω , the fuzzy 

logic controller of minimizing the rotation, as shown in 

Table 1. 

 

 

IV. EXPERIMENTS 

 

Fig. 4a is the image used in the experiment. Fig. 4b 

shows the values resulting from matching after image 

processing. Fig. 4 shows that the maximum matching error 

is within 4%. Therefore, it can be seen that our vision 

system is feasible for navigation. The mobile robot 

navigates along a corridor of a width of 2 m with some 

obstacles, as shown in Fig. 5a. The real trace of the mobile 

robot is shown in Fig. 5b. It demonstrates that the mobile 

robot avoids the obstacles intelligently and follows the 

corridor to the goal. 

 

 

V. CONCLUSIONS 

 

A fuzzy control algorithm for both obstacle avoidance 

and path planning was implemented in experiments. It 

enables a mobile robot to reach its goal point in unknown 

environments safely and autonomously. 
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(b) 

Fig. 4. Experimental result of the vision system (a) Input image, (b) 

result of matching. 

 

 

 

(a)  

 

(b) 

Fig. 5. Navigation of a robot in a corridor environment (a) Navigation in 

a corridor without a local minimum, (b) navigation robot in a corridor with 
the local minimum. 
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We also present an architecture for intelligent 

navigation of mobile robots that determines the robot’s 

behavior by arbitrating the distributed control commands: 

seek goal, avoid obstacles, and maintain heading. The 

commands are arbitrated by endowing them with a weight 

value and combining them, and the weight values are 

obtained by a fuzzy inference method. The arbitrating 

command allows multiple goals and constraints to be 

considered simultaneously. To show the efficiency of the 

proposed method, real experiments were performed. The 

experimental results show that a mobile robot can navigate 

to the goal point safely in unknown environments and can 

also avoid moving obstacles autonomously. Our ongoing 

research endeavors will include validation of more 

complex sets of behaviors, both in simulation and with an 

actual mobile robot. Further improvements of the 

prediction algorithm for obstacles and the robustness of 

performance are required. 
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