DOI QR코드

DOI QR Code

Theoretical Analysis of Impact of Q-switch Rise Time on Output Pulse Performance in an Ytterbium-doped Actively Q-switched Fiber Laser

이터븀 첨가 능동형 Q-스위칭 광섬유 레이저에서 Q-스위치 상승 시간이 출력 펄스에 미치는 영향에 대한 이론적 분석

  • Jeon, Jinwoo (School of Electrical and Computer Engineering, University of Seoul) ;
  • Lee, Junsu (School of Electrical and Computer Engineering, University of Seoul) ;
  • Lee, Ju Han (School of Electrical and Computer Engineering, University of Seoul)
  • 전진우 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 이준수 (서울시립대학교 전자전기컴퓨터공학부) ;
  • 이주한 (서울시립대학교 전자전기컴퓨터공학부)
  • Received : 2013.02.27
  • Accepted : 2013.04.15
  • Published : 2013.04.25

Abstract

A theoretical analysis of the impact of rise time of a Q-switch on the output pulse performance is carried out in an Ytterbium-doped actively Q-switched fiber laser. The finite difference time domain (FDTD) method is used to numerically simulate the Q-switched fiber laser. It is shown that stable Gaussian-like pulse shape can be generated when the Q-switch rise time is increased and pulse repetition rate is enlarged.

본 논문에서는 능동형 Q-스위칭 광섬유 레이저에서 Q-스위치 상승 시간이 출력 펄스에 미치는 영향을 이론적으로 분석하였다. Finite Difference Time Domain (FDTD) 방법을 이용해서 비율 방정식과 전파 방정식에 대한 모델링을 수행하였다. Q-스위칭 광섬유 레이저에서 발생하는 Q-스위칭 펄스의 생성에 있어서 Q-스위치의 상승 시간이 출력 펄스 특성에 미치는 영향을 이론적으로 분석하였다. 또한, Q-스위치의 반복률에 따른 출력 펄스의 에너지 변화와 파형 변화를 확인하였다. Q-스위치 반복률이 높아지고, Q-스위치의 상승 시간이 길어질수록 출력 펄스의 멀티 피크 현상이 줄어들고 안정된 가우시안 형태의 펄스 파형이 발생함을 확인 할 수 있었다.

Keywords

References

  1. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000). https://doi.org/10.1364/OL.25.000037
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, 63-92 (2010).
  3. A. Piper, A. Malinowski, K. Furusawa, and D. J. Richardson, "High-power, high-brightness, mJ Q-switched ytterbiumdoped fiber laser," Electron. Lett. 40, 928-929 (2004). https://doi.org/10.1049/el:20045661
  4. V. Philippov, C. Codemard, Y. Jeong, C. Alergria, J. K. Sahu, and J. Nilsson, "High-energy in-fiber pulse amplification for coherent lidar applications," Opt. Lett. 29, 2590-2592 (2004). https://doi.org/10.1364/OL.29.002590
  5. M. Laroche, H. Gilles, S. Girard, N. Passilly, and K. Aït-Ameur, "Nanosecond pulse generation in a passively Q-switched Yb-doped fiber laser by $Cr^{4+}$ : YAG saturable absorber," IEEE Photon. Tech. Lett. 18, 764-766 (2006). https://doi.org/10.1109/LPT.2006.871678
  6. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. V. Andres, "Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating," Opt. Express 14, 1106-1112 (2006). https://doi.org/10.1364/OE.14.001106
  7. Y. M. Chang, J. Lee, and J. H. Lee, "Active Q-switching in an erbium-doped fiber laser using an ultrafast siliconbased variable optical attenuator," Opt. Express 19, 26911-26916 (2011). https://doi.org/10.1364/OE.19.026911
  8. Y. Wang and C.-Q. Xu, "Understanding multipeak phenomena in actively Q-switched fiber lasers," Opt. Lett. 29, 1060-1062(2004). https://doi.org/10.1364/OL.29.001060
  9. Y. Huo, R. T. Brown, G. G. King, and P. K. Cheo, "Kinetic modeling of Q-switched high-power ytterbium-doped fiber laser," Appl. Opt. 43, 1404-1411 (2004). https://doi.org/10.1364/AO.43.001404
  10. S. Adachi and Y. Koyamada, "Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR," J. Lightwave Technol. 20, 1506-1511 (2002). https://doi.org/10.1109/JLT.2002.800293
  11. E.-L. Lim, S.-U. Alam, and D. J. Richardson, "The multipeak phenomena and nonlinear effects in Q-switched fiber lasers," IEEE Photon. Tech. Lett. 23, 1763-1765 (2011). https://doi.org/10.1109/LPT.2011.2169395