DOI QR코드

DOI QR Code

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ

활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성

  • Park, Won-Shik (Department of Materials Science and Engineering, Chungnam National University) ;
  • Oh, Kyoung-Hwan (Department of Materials Science and Engineering, Chungnam National University) ;
  • Rhee, Sang-In (Department of Mechanical Design, Daeduk College) ;
  • Suhr, Dong-Soo (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2013.02.21
  • Accepted : 2013.03.12
  • Published : 2013.04.27

Abstract

Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

Keywords

References

  1. Y. Tamaura, Energy Conversion & Management, 33, 195-198 (1992).
  2. T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamaura,, Energy, 22(2,3), 183-187 (1997). https://doi.org/10.1016/S0360-5442(96)00097-7
  3. K. Nishizawa, T. Kodama, M. Tabata, T. Yoshida and Y. Tamaura, Ferrites, 239-241, T. Yamaguchi, M. Abe, Japan Society of Powder and Metallurgy, Tokyo and Kyoto (1992).
  4. Y. Wada, T. Yoshida, M. Tsuj.I and Y. Tamaura, Energy Convers. Mg mr, 36(6), 641(1995). https://doi.org/10.1016/0196-8904(95)00087-T
  5. T. Kodama, Y. Wada, T. Yamamoto, M. Tsuji and Y. Tamaura, Materidr Raurcb Bulletin, 30(8), 1039-1048 (1995). https://doi.org/10.1016/0025-5408(95)00077-1
  6. T. Kodama, M. Tabata, T. Sano, M. Tsuji and Y. Tamaura, Journal of Solid State Chemistry, 120, 64-69 (1995). https://doi.org/10.1006/jssc.1995.1377
  7. T. Sano, T. Togawa, M. Kojima, M. Tsuji and Y. Tamaura, Energy, 21(5), 377-384 (1996). https://doi.org/10.1016/0360-5442(95)00112-3
  8. K. S. Lin, A. K. A, Adhikari, Z. Y. Tsai, Y. P. Chen, T. T. Chien, and H. B. Tsai, Catalysis Today, 174, 88-96 (2011). https://doi.org/10.1016/j.cattod.2011.02.013
  9. L. J. Ma, L. S. Chen, and S. Y. Chen, Solid State Sciences, 11, 176-181 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.05.008
  10. C. L. Zhang, S. Li, L. J. Wang, T. H. Wu and S.Y. Peng, Materials 11. Chemistry and Physics, 62, 44-51 (2000). https://doi.org/10.1016/S0254-0584(99)00169-8
  11. H. C. Shin, C. Kim, J. C. Choi, M. Tsuji, and S. C. Choi, J. Kor. Soc., 8(1), 137(1999) (in Korean).
  12. D. S. Ryu, D. S. Lee, P. H. Lee, and S. T. Kim, J. Kor. Cerm. Soc., 37(6), 559 (2000) (in Korean).
  13. W. S. Park, K. H. Oh, S. J. Ahn and D. S. Shur, J. Mater. Res., 22(5), 253-258 (2012) (in Korean).
  14. K. H. Oh, W. S. Park, S. I. Rhee and D. S. Shur, J. Mater. Res., 22(11), 620-625 (2012) (in Korean).
  15. V. Carles, P. Alphonse, P. Tailhades, and A. Rousset, Thermochimica acta, 334, 107-113 (1999). https://doi.org/10.1016/S0040-6031(99)00133-1
  16. R. Majumdar, P. Sarkar, U. Ray, and M. R. Mukhopadhyay, Thermochimica acta, 335, 43-53 (1999). https://doi.org/10.1016/S0040-6031(99)00128-8
  17. M. A. Mohamed, A. K. Galwey, and S. A. Halawy, Thermochimica acta, 429, 57-72 (2005). https://doi.org/10.1016/j.tca.2004.08.021
  18. B. V. L'vov, Thermochimica acta, 364, 99-109 (2000). https://doi.org/10.1016/S0040-6031(00)00629-8