DOI QR코드

DOI QR Code

Variation of Nanoindentation Curve due to Wear of Indenter Apex and Its Correction Method

압입자 첨단마모에 따른 나노압입곡선의 변화 및 이의 보정기법

  • Lee, Yun-Hee (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Yong-Il (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Park, Jong Seo (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Kwang Ho
  • 이윤희 (한국표준과학연구원 산업측정표준본부) ;
  • 김용일 (한국표준과학연구원 산업측정표준본부) ;
  • 박종서 (한국표준과학연구원 산업측정표준본부) ;
  • 김광호 ((주)프론틱스)
  • Received : 2013.03.06
  • Accepted : 2013.04.17
  • Published : 2013.04.30

Abstract

A force calibration of a nanoindenter and a 3D morphology observation of indenters were carried out in this study. A microbalance calibrated with standard weights was used for measuring the loads generated by a nanoindenter. The indentation load could be calibrated from the ratio of measured and generated loads and the first contact load also could be detected from the microbalance data. By analyzing atomic force microscopy images of two indenters, curvature radii of apexes were determined by $19.71{\pm}3.03$ and $1043.94{\pm}50.91$ nm, respectively, for the nearly new indenter A and the severly worn indenter B. Corresponding bluntness depths were estimated by 1.22 and 64.56 nm for the both indenters by overlapping their profiles on the perfect pyramidal shape. In addition, nanoindentation curves obtained from a fused silica reference material with the both indenters showed a depth difference corresponding to the bluntness depth difference along the indentation depth axis. By shifting amounts of the bluntness depths along the horizontal axis, whole nanoindentation curves overlapped on themselves and resulted in nanohardness values consistent within 1.11 % without considering the complex indenter area function of each indenter.

나노압입시험기의 힘교정과 압입자에 대한 3차원 형상 관찰 및 분석이 본 연구에서 진행되었다. 표준분동으로 교정한 마이크로밸런스로 나노압입시험기에서 발생시킨 하중을 측정하여 측정치와 발생치의 비로 압입하중을 교정하였고, 나노압입시험의 시작점인 초기 접촉 하중도 확인할 수 있었다. 삼각뿔 압입자를 원자현미경으로 관찰하여 분석한 결과 비교적 사용이력이 없는 압입자 A와 마모된 압입자 B의 첨단곡률반경은 각각 $19.71{\pm}3.03$ nm와 $1043.94{\pm}50.91$ nm로 결정되었다. 완벽한 삼각뿔 압입자 형상과 중첩하여 압입자 A와 B의 첨단무딘깊이(bluntness depth)를 1.22 nm와 64.56 nm로 결정하였고, 용해실리카 기준시편에 수행한 나노압입시험 결과를 살펴본 결과 두 압입자의 압입하중-변위곡선들이 무딘깊이 차이만큼 수평축으로 서로 어긋나 있음을 확인할 수 있었다. 수평 이동을 통해 보정된 압입곡선의 분석을 통해 개별 압입자 면적함수에 대한 고려없이 1.11 % 이내에서 동일한 용해실리카의 나노경도를 결정할 수 있었다.

Keywords

References

  1. J. B. Pethica, R. Hutchings and W. C. Oliver, "Hardness measurement at penetration depths as small as 20 nm," Philosophical Magazine A, Vol. 48, pp. 593-606 (1983) https://doi.org/10.1080/01418618308234914
  2. M. F. Doerner and W. D. Nix, "A method for interpreting the data from depth-sensing indentation instruments," Journal of Materials Research, Vol. 1, pp. 601-609 (1986) https://doi.org/10.1557/JMR.1986.0601
  3. W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, Vol. 7, pp. 1564-1583 (1992) https://doi.org/10.1557/JMR.1992.1564
  4. W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson and J. T. Wyrobek, "Indentation induced dislocation nucleation: the initial yield point," Acta Materialia, Vol. 44, pp. 3585-3598 (1996) https://doi.org/10.1016/1359-6454(96)00010-9
  5. B. R. Lawn, A. G. Evans and D. B. Marshall, "Elastic/plastic indentation damage in ceramics: the median/radial crack system," Journal of American Ceramic Society, Vol. 63, pp. 574-581 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  6. N. Cuadrado, D. Casellas, M. Anglada and E. Jimenez-Pique, "Evaluation of fracture toughness of small volumes by means of cube-corner nanoindentation," Scripta Materialia, Vol. 66, pp. 670-673 (2012) https://doi.org/10.1016/j.scriptamat.2012.01.033
  7. J.-Y. Kim, K.-W. Lee, J.-S. Lee and D. Kwon, "Determination of tensile properties by instrumented indentation technique: representative stress and strain approach," Surface and Coatings Technology, Vol. 201, pp. 4278-4283 (2006) https://doi.org/10.1016/j.surfcoat.2006.08.054
  8. S. R. Kalidindi and S. Pathak, "Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves," Acta Materialia, Vol. 56, pp. 3523-3532 (2008) https://doi.org/10.1016/j.actamat.2008.03.036
  9. M. Skrzypczak, C. Guerret-Piecourt, S. Bec, J.-L. Loubet and O. Guerret, "Use of a nanoindentation fatigue test to characterize the ductile-brittle transition," Journal of the European Ceramic Society, Vol. 29, pp. 1021-1028 (2009) https://doi.org/10.1016/j.jeurceramsoc.2008.07.066
  10. Y.-H. Lee and D. Kwon, "Estimation of biaxial surface stress by instrumented indentation with sharp indenters," Acta Materialia, Vol. 52, pp. 1555-1563 (2004) https://doi.org/10.1016/j.actamat.2003.12.006
  11. Y.-H. Lee, J.-Y. Kim, U. Baek and S. H. Nahm, "Stress characterization of surface damages on soda-lime glass using a nanocontact deformation method," Journal of Materials Science, Vol. 41, pp. 8203-8208 (2007)
  12. R. Gu and A. H. W. Ngan, "Effects of prestraining and coating on plastic deformation of aluminum micropillars," Acta Materialia, Vol. 60, pp. 6102-6111 (2012) https://doi.org/10.1016/j.actamat.2012.07.048
  13. C. Shin, H.-h. Jin, H. Sung, D.-J. Kim, Y. S. Choi and K. Oh, "Evaluation of irradiation effects on fracture strength of silicon carbide using micropillar compression tests," Experimental Mechanics, in-press (2012)
  14. J. M. Wheeler, R. Raghavan and J. Michler, "In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures," Materials Science and Engineering A, Vol. 528, pp. 8750-8756 (2011) https://doi.org/10.1016/j.msea.2011.08.057
  15. C. E. Carlton and P. J. Ferreiratem, "In situ TEM nanoindentation of nanoparticles," Micron, Vol. 43, pp. 1134-1139 (2012) https://doi.org/10.1016/j.micron.2012.03.002
  16. S. Hengsberger, P. Amann, B. Legros, R. Rizzoli and P. Zysset, "Intrinsic bone tissue properties in adult rat vertebrae: modulation by dietary protein," Bone, Vol. 36, pp. 134-141 (2005) https://doi.org/10.1016/j.bone.2004.09.013
  17. A. Barnoush, M. Asgari and R. Johnsen, "Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation," Scripta Materialia, Vol. 66, pp. 414-417 (2012) https://doi.org/10.1016/j.scriptamat.2011.12.004
  18. D. A. Lucca, K. Herrmann and M. J. Klopfstein, "Nanoindentation: measuring methods and applications," CIRP Annals-Manufacturing Technology, Vol. 59, pp. 803-819 (2010) https://doi.org/10.1016/j.cirp.2010.05.009
  19. J. Fruhauf, E. Gartner, K. Herrmann, F. Menelao, D. Schwenk, T. Chudoba and H.-P. Vollmar, "Calibration of instruments for hardness testing by use of a standard," HARDMEKO 2007, Tsukuba, Japan, pp. 141-145 (2007)
  20. J. S. Park, Y.-H. Lee, Y.-i. Kim and J.-H. Hahn, "Prediction of bluntness for pyramidal indenters from nanoindentation curves," Surface and Coatings Technology, Vol. 211, pp. 148-151 (2012) https://doi.org/10.1016/j.surfcoat.2011.06.059
  21. Y.-H. Lee, Y.-I. Kim and J.-H. Hahn, "Hardness variation with indenter sharpness in an Au thin-film," Journal of Nanoscience and Nanotechnology, Vol. 12, pp. 5648-5652 (2012) https://doi.org/10.1166/jnn.2012.6334