DOI QR코드

DOI QR Code

Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability

가역투자율에 의한 첨단 페라이트강의 잔여수명에 대한 비파괴평가

  • 홍승표 (조선대학교 대학원 첨단소재공학과) ;
  • 류권상 (한국표준과학연구원) ;
  • 김정석 (조선대학교 금속재료공학과)
  • Received : 2013.03.22
  • Accepted : 2013.04.19
  • Published : 2013.04.30

Abstract

We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.

가역투자율을 이용하여 차세대 에너지 설비 재료로 사용되는 첨단 페라이트강의 잔여수명을 비파괴적으로 평가하고자 하였다. 가역투자율 측정법은 가역투자율 값이 자기 히스테리시스 루프의 미분과 동일하다는 이론을 기반으로 하게 된다. 측정 원리는 한 가진진동수로 가변된 락-인 증폭기를 사용하여 탐지코일에 유도된 조화성분들의 진폭 값을 기본으로 한다. 가역투자율의 피크 간격, 비이커스 경도 그리고 인장강도는 시효된 샘플들에서 시효시간이 증가함에 따라서 감소하였다. 가역투자율의 피크 간격과 라손-밀러 파라미터의 관계를 통해 첨단 페라이트강의 잔여수명을 비파괴적으로 예측하는 것이 가능해진다.

Keywords

References

  1. F. Abe, "Bainitic and martensitic creepresistant steels," Current Opinion in Solid State and Materials Science, Vol. 8, No. 3-4, pp. 305-311 (2004) https://doi.org/10.1016/j.cossms.2004.12.001
  2. P. J. Szabo, "Microstructure development of creep resistant ferritic steel during creep," Materials Science and Engineering A, Vol. 387-389, pp. 710-715 (2004) https://doi.org/10.1016/j.msea.2004.01.091
  3. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi and K. Kanazawa, "Microstructures of creep-fatigued 9-12% Cr ferritic heatresisting steels," International Journal of Fatigue, Vol. 28, No. 3, pp. 300-308 (2006) https://doi.org/10.1016/j.ijfatigue.2005.04.013
  4. K. S. Ryu, S. H. Nahm, Y. B. Kim, K. M. Yu and D. Son, "Dependence of magnetic properties on isothermal heat treatment time for 1Cr-1Mo-0.25 V steel," Journal of Magnetism and Magnetic Materials, Vol. 222, No. 1-2, pp. 128-132 (2000) https://doi.org/10.1016/S0304-8853(00)00532-1
  5. K. S. Ryu, S. H. Nahm, Y. I. Kim, K. M. Yu, Y. B. Kim, Y. Cho and D. Son, "Nondestructive evaluation of residual life of 1Cr-1Mo-0.25V steel by reversible magnetic permeability," Journal of Magnetics, Vol. 6, No. 1, pp. 27-30 (2001)
  6. C. S. Kim, C. J. Lissenden, I. K. Park and K. S. Ryu, "Dynamic coercivity of advanced ferritic steel during long-term isothermal ageing," Materials Transactions, Vol 50, No. 11, pp. 2691-2694 (2009) https://doi.org/10.2320/matertrans.M2009170
  7. A. Mitra, J. N. Mohapatra, J. Swaminathan, M. Ghosh, A. K. Panda and R. N. Ghosh, "Magnetic evaluation of creep in modified 9Cr-1Mo steel," Scripta Mater., Vol. 57, No. 9, pp. 813-816 (2007) https://doi.org/10.1016/j.scriptamat.2007.07.004
  8. J. Degauque, B. Astie, J. L. Porteseil and R. Vergne, "Influence of the grain size on the magnetic and magnetomechanical properties of high-purity iron," J. Magn. Magn. Mater., Vol. 26, No. 1-3, pp. 261-263 (1982) https://doi.org/10.1016/0304-8853(82)90166-4
  9. M. J. Sablik, "Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels," J. Appl. Phys., Vol. 89, No. 10, pp. 5610-5613 (2001) https://doi.org/10.1063/1.1359167
  10. C. S. Kim, "Characterization of reversible permeability in advanced USC steel during thermal aging," Physica Status Solidi A, Vol. 207, No. 1, pp. 97-100 (2010) https://doi.org/10.1002/pssa.200925071