DOI QR코드

DOI QR Code

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite

Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용

  • Received : 2012.09.26
  • Accepted : 2013.01.19
  • Published : 2013.05.25

Abstract

In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

본 연구에서는 실리카 나노 입자의 표면개질을 위해 실란 커플링제인 bis[3-(triethoxysilylpropyl)]tetrasulfide(TESPT)를 사용하여 표면개질 반응을 수행하였다. 반응온도, 반응시간 및 TESPT 투입량의 변화가 실리카 표면개질 반응에 미치는 영향을 Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), elemental analysis(EA) 및 고체 $^{13}C$$^{29}Si$ cross-polarization magic angle spinning(CP/MAS) nuclear magnetic resonance spectroscopy(NMR)를 사용하여 분석하였다. 실리카 대비 투입되는 TESPT의 투입량을 증가시킬수록 $3746cm^{-1}$의 실리카의 고립 실란올(isolated) 피크의 세기는 줄어들었고, $2938cm^{-1}$의 TESPT의 $-CH_2$기에 의한 피크의 세기는 증가하였다. 또한 TESPT로 표면 개질된 실리카가 SBR 복합체의 기계적 물성에 미치는 영향과 SBR 기질 내에서 실란 커플링제로 표면 처리된 실리카의 분산정도를 universal testing machine(UTM)과 field emission scanning electron microscope(FE-SEM)를 이용하여 각각 측정하였다. 실험 결과 개질되지 않은 본래(pristine) 실리카를 20 phr(parts per hundred of rubber) 넣은 SBR 나노복합체에 비해 개질된 실리카 20 phr를 넣은 SBR 복합체의 인장강도는 5.65에서 9.38 MPa, 100% modulus는 1.62에서 2.73 MPa로 각각 증가하였으나, 파괴점 신장률은 349.6에서 298.9%로 조금 감소되었으며, SBR 기질 내의 실리카 분산성은 TESPT로 처리된 실리카가 본래 실리카에 비해 우수하였다.

Keywords

References

  1. S. S. Choi, C. Nah, S. G. Lee, and C. W. Joo, Polym. Int., 52, 23 (2003). https://doi.org/10.1002/pi.975
  2. C. Roy, A. Chaala, and H. Darmstadt, J. Anal. Appl. Pyrolysis, 51, 201 (1999). https://doi.org/10.1016/S0165-2370(99)00017-0
  3. S. C. Oh, J. H. Go, S. Lee, and N. C. Park, J. Korea Institute of Rubber Industry, 30, 112 (1995).
  4. G. H. Kwak, S. J. Park, J. R. Lee, and S. K. Hong, Polymer(Korea), 23, 281 (1999).
  5. D. M. Schwaber and F. Rodriguez, Rubber Plast., 48, 1081 (1967).
  6. S. J. Park and K. S. Cho, Polymer(Korea), 27, 91 (2003).
  7. S. K. Song, J. H. Kim, K. S. Hwang, and K. Ha, Korean Chem. Eng. Res., 49, 181 (2011). https://doi.org/10.9713/kcer.2011.49.2.181
  8. A. Ansarifar, H. P. Lim, and R. Nijhawan, Int. J. Adhes. Adhes., 24, 10 (2004).
  9. J. B. Moon, Elastomers and Composites, 36, 237 (2001).
  10. H. Dohi and S. Horiuchi, Langmuir, 23, 12344 (2007). https://doi.org/10.1021/la701537k
  11. M. Marrone, T. Montanari, G. Busca, L. Conzatti, G. Costa, M. Castellano, and A. Turturro, J. Phys. Chem. B, 108, 3563 (2004). https://doi.org/10.1021/jp036148x
  12. P. Innocenzi and G. Brusatin, J. Non-Cryst. Solids, 333, 137 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.09.043
  13. H. G. Burhin, Kautschuk Gummi Kunststoffe, 55, 175 (2002).
  14. M. Abboud, M. Turner, E. Duguet, and M. Fontanille, J. Mater. Chem., 7, 1527 (1997). https://doi.org/10.1039/a700573c
  15. S. K. Wason, "Synthetic Silicas", in Handbook of Fillers, H. S. Katz, and J. V. Milewski, Editors, Van Nostrand Reinhold, New York, Chap. 9, p 171 (1987).
  16. N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, Langmuir, 28, 656 (2012). https://doi.org/10.1021/la2036778
  17. D. G. Kurth and T. Bein, Langmuir, 9, 2965 (1993). https://doi.org/10.1021/la00035a039
  18. J. L. Valentin, M. A. Lopez-Manchado, P. Posadas, A. Rodriguez, A. Marcos-Fernández, and L. Ibarra, J. Colloid Interface Sci., 298, 794 (2006). https://doi.org/10.1016/j.jcis.2005.12.056
  19. H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 62, 7512 (1997). https://doi.org/10.1021/jo971176v
  20. H. N. Jeon, J. H. Kim, and K. Ha, Polymer(Korea), 36, 372 (2012).
  21. D. Derouet and C. N. H. Thuc, J. Appl. Polym. Sci., 109, 2113 (2003).
  22. J. Luo, J. Lannutti, and R. Seghi, J. Adhesion Sci. Technol., 15, 267 (2001). https://doi.org/10.1163/156856101750196748
  23. J. S. Chung, D. J. Kim, W. S. Ahn, J. H. Ko, and W. J. Cheong, Korean J. Chem. Eng., 21, 132 (2004). https://doi.org/10.1007/BF02705391
  24. S. J. Park and K. S. Cho, J. Colloid Interface Sci., 267, 86 (2003). https://doi.org/10.1016/S0021-9797(03)00132-2
  25. S. S. Choi, J. C. Kim, J. E. Ko, Y. S. Cho, and W. G. Shin, J. Ind. Eng. Chem., 13, 1017 (2007).

Cited by

  1. A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1079
  2. 실리카-커플링제-고무의 화학 결합 형성과 특성 분석 vol.49, pp.3, 2013, https://doi.org/10.7473/ec.2014.49.3.239
  3. Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch vol.53, pp.3, 2013, https://doi.org/10.7473/ec.2018.53.3.175