DOI QR코드

DOI QR Code

Energy Flow and Bond Dissociation of Vibrationally Excited Toluene in Collisions with N2 and O2

  • Ree, Jongbaik (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Sung Hee (Department of Chemistry Education, Chonnam National University) ;
  • Lee, Sang Kwon (Department of Chemistry Education, Chonnam National University)
  • Received : 2013.02.12
  • Accepted : 2013.02.26
  • Published : 2013.05.20

Abstract

Energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with $N_2$ and $O_2$ have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 5,000 and 45,000 $cm^{-1}$. Intermolecular energy transfer occurs via both of V-T and V-V transfers. Both of V-T and V-V transfers increase as the total vibrational energy of toluene increases. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability, and that in the collision with $N_2$ is larger than with $O_2$.

Keywords

References

  1. Yardley, J. T. Introduction to Molecular Energy Transfer; Academic: New York, 1980.
  2. Zellweger, J. M.; Brown, T. C.; Barker, J. R. J. Chem. Phys. 1985, 83, 6261. https://doi.org/10.1063/1.449575
  3. Shi, J.; Barker, J. R. J. Chem. Phys. 1988, 88, 6219. https://doi.org/10.1063/1.454460
  4. Yerram, M. L.; Brenner, J. D.; King, K. D.; Barker, J. R. J. Phys. Chem. 1990, 94, 6341. https://doi.org/10.1021/j100379a036
  5. Hippler, H.; Otto, B.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 428. https://doi.org/10.1002/bbpc.19890930404
  6. Nakashima, N.; Yoshihara, K. J. Chem. Phys. 1983, 79, 2727. https://doi.org/10.1063/1.446176
  7. Abel, B.; Herzog, B.; Hippler, H.; Troe, J. J. Chem. Phys. 1989, 91, 900. https://doi.org/10.1063/1.457141
  8. Heymann, M.; Hippler, H.; Nahr, D.; Plach, H. J.; Troe, J. J. Phys. Chem. 1988, 92, 5507. https://doi.org/10.1021/j100330a035
  9. Heymann, M.; Hippler, H.; Plach, H. J.; Troe, J. J. Chem. Phys. 1987, 87, 3867. https://doi.org/10.1063/1.453714
  10. Wallington, T. J.; Scheer, M. D.; Braun, W. Chem. Phys. Lett. 1987, 138, 538. https://doi.org/10.1016/0009-2614(87)80120-3
  11. Beck, K. M.; Gordon, R. J. J. Chem. Phys. 1987, 87, 5681. https://doi.org/10.1063/1.453736
  12. Toselli, B. M.; Walunas, T. L.; Barker, J. R. J. Chem. Phys. 1990, 92, 4793. https://doi.org/10.1063/1.458573
  13. Clary, D. C.; Gilbert, R. G.; Bernshtein, V.; Oref, I. Faraday Discuss. 1995, 102, 423. https://doi.org/10.1039/fd9950200423
  14. Sevy, E. T.; Rubin, S. M.; Lin, Z.; Flynn, G. W. J. Chem. Phys. 2000, 113, 4912. https://doi.org/10.1063/1.1289247
  15. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 2002, 116, 4858. https://doi.org/10.1063/1.1452726
  16. Du, J.; Yuan, L.; Hsieh, S.; Lin, F.; Mullin, A. S. J. Phys. Chem. A 2008, 112, 9396. https://doi.org/10.1021/jp802421f
  17. Hsu, H. C.; Tsai, M.-T.; Dyakov, Y. A.; Ni, C.-K. Int. Rev. Phys. Chem. 2012, 31, 201. https://doi.org/10.1080/0144235X.2012.673282
  18. Schwartz, R. N.; Slawsky, Z. I.; Herzfeld, K. F. J. Chem. Phys. 1952, 20, 1591. https://doi.org/10.1063/1.1700221
  19. Tanczos, F. I. J. Chem. Phys. 1956, 25, 439. https://doi.org/10.1063/1.1742943
  20. Schranz, H. W.; Nordholm, S. Int. J. Chem. Kinet. 1981, 13, 1051. https://doi.org/10.1002/kin.550131006
  21. Gilbert, R. G. J. Chem. Phys. 1984, 80, 5501. https://doi.org/10.1063/1.446661
  22. Sceats, M. G. J. Chem. Phys. 1989, 91, 6795. https://doi.org/10.1063/1.457349
  23. Hynes R. G.; Sceats, M. G. J. Chem. Phys. 1989, 91, 6804. https://doi.org/10.1063/1.457350
  24. Toselli, B. M.; Barker, J. R. Chem. Phys. Lett. 1990, 174, 304. https://doi.org/10.1016/0009-2614(90)85350-L
  25. Lim, K. F.; Gilbert, R. G. J. Phys. Chem. 1990, 94, 72. https://doi.org/10.1021/j100364a011
  26. Lim, K. F.; Gilbert, R. G. J. Phys. Chem. 1990, 94, 77. https://doi.org/10.1021/j100364a012
  27. Toselli, B. M.; Brenner, J. D.; Yerram, M. L.; Chin, W. E.; King, K. D.; Barker, J. R. J. Chem. Phys. 1991, 95, 176. https://doi.org/10.1063/1.461473
  28. Lee, S.; Ree, J. Bull. Kor. Chem. Soc. 2012, 33, 1063. https://doi.org/10.5012/bkcs.2012.33.3.1063
  29. Wright, S. M. A.; Sims, I. R.; Smith, I. W. M. J. Phys. Chem. A 2000, 104, 10347. https://doi.org/10.1021/jp0014216
  30. Lim, K. F. J. Chem. Phys. 1994, 101, 8756. https://doi.org/10.1063/1.468070
  31. Catlett, D. L., Jr.; Parmenter, C. S.; Pursell, C. J. J. Phys. Chem. 1994, 98, 3263. https://doi.org/10.1021/j100064a003
  32. Catlett, D. L., Jr.; Parmenter, C. S.; Pursell, C. J. J. Phys. Chem. 1995, 99, 7371. https://doi.org/10.1021/j100019a021
  33. Shin, H. K. J. Phys. Chem. A 2000, 104, 6699. https://doi.org/10.1021/jp0009094
  34. Nilsson, D.; Nordholm, S. J. Chem. Phys. 2002, 116, 7040. https://doi.org/10.1063/1.1458925
  35. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2004, 394, 250. https://doi.org/10.1016/j.cplett.2004.06.134
  36. Ree, J.; Chang, K. S.; Kim, Y. H.; Shin, H. K. Bull. Kor. Chem. Soc. 2003, 24, 1223. https://doi.org/10.5012/bkcs.2003.24.8.1223
  37. Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Kor. Chem. Soc.2005, 26, 1269. https://doi.org/10.5012/bkcs.2005.26.8.1269
  38. Ree, J.; Kim, S. H.; Lee, T. H.; Kim, Y. H. Bull. Kor. Chem. Soc.2006, 27, 495. https://doi.org/10.5012/bkcs.2006.27.4.495
  39. Hippler, H.; Troe, J.; Wendelken, H. J. Chem. Phys. Lett. 1981, 84, 257. https://doi.org/10.1016/0009-2614(81)80339-9
  40. Hippler, H.; Troe, J.; Wendelken, H. J. J. Chem. Phys. 1983, 78, 5351; 78, 6709; 78, 6718
  41. Hippler, H.; Troe, J.; Wendelken, H. J. Chem. Phys. Lett. 1984, 80, 1853.
  42. Bernshtein, V.; Oref. I. J. Phys. Chem. A 2006, 110, 8477. https://doi.org/10.1021/jp055612q
  43. Bernshtein, V.; Oref. I. J. Phys. Chem. B 2005, 109, 8310. https://doi.org/10.1021/jp046693d
  44. Bernshtein, V.; Oref. I. J. Phys. Chem. A 2006, 110, 1541. https://doi.org/10.1021/jp053582l
  45. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1967
  46. Lim, K. F. J. Chem. Phys. 1994, 100, 7385. https://doi.org/10.1063/1.466882
  47. Xie, Y.; Boggs, J. E. J. Comp. Chem. 1986, 7, 158. https://doi.org/10.1002/jcc.540070209
  48. http://webbook.nist.gov/chemistry/name-ser.html
  49. Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223, 59. https://doi.org/10.1016/S0301-0104(97)00145-6
  50. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
  51. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice-Hall: New York, 1971.
  52. MATH/LIBRARY, Fortran Subroutines for Mathematical Applications; IMSL: Houston, 1989; p 640.

Cited by

  1. /HCl Collisions vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11201
  2. Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2 vol.34, pp.12, 2013, https://doi.org/10.5012/bkcs.2013.34.12.3641
  3. Isotope Effects on the Energy Flow and Bond Dissociations of Excited α‐Chlorotoluene in Collisions with H 2 / D 2 vol.42, pp.5, 2013, https://doi.org/10.1002/bkcs.12258