DOI QR코드

DOI QR Code

The Effect of Chrysin on the Transcriptional Activity of Vitamin D Receptor in Human Keratinocytes

각질형성세포에서 Chrysin이 Vitamin D Receptor의 전사 활성화에 미치는 영향

  • 추정하 ((주) LG생활건강 기술연구원) ;
  • 이상화 ((주) LG생활건강 기술연구원)
  • Received : 2012.06.18
  • Accepted : 2013.03.13
  • Published : 2013.03.31

Abstract

Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in various plants and foods such as propolis and honey. It has been reported that chrysin has various biological effects including antioxidant, anti-aging, anti-inflammatory and anti-cancer. In this study, we investigated the effect of chrysin on the transcriptional activity of VDR in human epidermal keratinocytes by performing dual-luciferase assay. Chrysin significantly induced the transcriptional activity of VDR in a concentration-dependent manner. The VDR mRNA expression was investigated by quantitative real time PCR and chrysin increased the VDR mRNA expression in normal human epidermal keratinocytes. We also found that chrysin increased the expression of keratinocyte differentiation markers such as keratin 10, involucrin and filaggrin. Therefore, the results suggest that chrysin can stimulate the differentiation of human keratinocytes by increasing transcriptional activity of VDR.

Chrysin (5,7-dihydroxyflavone)은 프로폴리스, 꿀 같은 음식과 다양한 식물에 존재하는 천연 플라보노이드이다. Chrysin은 항산화, 항노화, 항염, 항암 효과 등 다양한 생물학적 효과를 가진다고 알려져 있다. 이 연구에서, 우리는 사람의 각질형성세포에서 chrysin이 VDR을 통한 transcriptional activity에 미치는 영향을 dual-luciferase assay을 통하여 살펴보았다. Chrysin은 농도 의존적으로 VDR을 통한 transcriptional activity를 증가시켰다. Quantitative real time PCR을 통해 chrysin이 사람의 각질형성세포에서 VDR mRNA의 발현을 증가시킴을 확인하였다. 또한, chrysin이 각질형성세포의 분화 마커인 keratin 10, involucrin 그리고 filaggrin의 mRNA 발현을 증가시킴을 확인하였다. 이러한 연구 결과는 chrysin이 VDR을 통한 transcriptional activity를 조절하여 각질형성세포의 분화를 촉진시킬 수 있다는 것을 시사한다.

Keywords

References

  1. C. Skibola and M. Smith, Potential health impacts of excessive flavonoid intake, Free Radic. Biol., 29, 375 (2000). https://doi.org/10.1016/S0891-5849(00)00304-X
  2. L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev., 56, 317 (1998).
  3. A. Scalbert, C. Manach, C. Morand, C. Remesy, and L. Jimenez, Dietary polyphenols and the prevention of diseases, Crit. Rev. Food Sci. Nutr., 45, 287 (2005). https://doi.org/10.1080/1040869059096
  4. E. H. Kelly, R. T. Anthony, and J. B. Dennis, Flavonoid antioxidants: chemistry, metabolism and structureactivity relationship, J. Nutr. Biochem., 13, 572 (2002). https://doi.org/10.1016/S0955-2863(02)00208-5
  5. J. Robert, N. Els, E.C. Danny, G. B. Petra, N. Klaske, and A. M. Paul, Flavonoids: a review of probable mechanisms of action and potential applications, Am. J. Clin. Nutr., 74, 418 (2001).
  6. S. K. Jaganathan and M. Mandal, Antiproliferative effects of honey and of its polyphenols: a review, J. Biomed. Biotechnol., 2009, 830616 (2009).
  7. L. Estevinho, A. P. Pereira, L. Moreira, L. G. Dias, and E. Pereira, Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey, Food Chem. Toxicol., 46, 3774 (2008). https://doi.org/10.1016/j.fct.2008.09.062
  8. K. J. Woo, Y. J. Jeong, J. W. Park, and T. K. Kwon, Chrysin induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells, Biochem. Biophys. Res. Commun., 325, 1215 (2004). https://doi.org/10.1016/j.bbrc.2004.09.225
  9. P. Goncalves, J. R. Arauio, M. J. Pinho, and F. Martel, In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds, Nutr. Cancer, 63, 282 (2011). https://doi.org/10.1080/01635581.2011.523166
  10. M. Ca'rdenas, M. Marder, V. C. Blank, and L. P. Roguin, Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines, Bioorg. Med. Chem., 14, 2966 (2006). https://doi.org/10.1016/j.bmc.2005.12.021
  11. H. Cho, C. W. Yun, W. K. Park, J. Y. Kong, K. S. Kim, Y. Park, S. Lee, and B. K Kim, Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives, Pharmacol Res., 49, 37 (2004). https://doi.org/10.1016/S1043-6618(03)00248-2
  12. N. Wu, J. Fang, M. Chen, C. Wu, C. Huang, and C. Huang, Chrysin protects epicermal keratinocytes from UVA- and UVB-induced damage, J. Agric. Food Chem., 59, 8391 (2011). https://doi.org/10.1021/jf200931t
  13. J. A. MacLaughlin, R. R. Anderson, and M. F. Holick, Spectral character of sunlight modulates photosynthesis of previtamin$ D_3 $and its photoisomers in human skin, Science, 216, 1001 (1982). https://doi.org/10.1126/science.6281884
  14. D. D. Bikle, M. K. Nemanic, E. Gee, E, and P. Elisa, 1,25-Dihydroxyvitamin $ D_3 $ production by human keratinocytes kinetics and regulation, J. Clin. Invest., 78, 557 (1986). https://doi.org/10.1172/JCI112609
  15. D. D. Bikle, M. K. Nemanic, J. O. Whitney, and P. W. Elisa, Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin$ D_3 $, Biochemistry, 25, 1545 (1986). https://doi.org/10.1021/bi00355a013
  16. B. Lehmann, T. Genehr, P. Knuschke, J. Pietzsch, and M. Meurer, UVB-induced conversion of 7-dehydrocholesterol to 1alpha, 25-dihydroxyvitamin $ D_3 $ in an in vitro human skin equivalent model, J. Invest. Dermatol., 117, 1179 (2001). https://doi.org/10.1046/j.0022-202x.2001.01538.x
  17. K. Matsumoto, Y. Azuma, M. Kiyoki, H. Okumura, K. Hashimoto, and K. Yoshikawa, Involvement of endogenously produced 1,25-dihydroxyvitamin D-3 in the growth and differentiation of human keratinocytes, Biochim. Biophys. Acta., 1092, 311 (1991). https://doi.org/10.1016/S0167-4889(97)90006-9
  18. G. K. Fu, D. Lin, M. Y. Zhang, D. D. Bikle, C. H. Shackelton, W. L. Miller, and A. A. Portale, Cloning of human 25-hydroxyvitamin D-alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1, Mol. Endocrinol., 11, 1961 (1997).
  19. K. Kragballe, Calcipotriol: a new drug for topical psoriasis treatment, Pharm. Toxicol., 77, 241 (1995). https://doi.org/10.1111/j.1600-0773.1995.tb01020.x
  20. M. Bagot, D. Charue, M. C. Lescs, R. Pamphile, and J. Revuz, Immunosuppressive effects of 1,25-dihydroxyvitamin $ D_3 $ and its analogue caciportriol on epidermal cells, Br. J. Dermatol., 130, 424 (1994). https://doi.org/10.1111/j.1365-2133.1994.tb03373.x
  21. M. R. Walters, Newly identified actions of the vitamin D system, Endocr. Rev., 13, 719 (1992).
  22. K. Kragballe, Treatment of psoriasis with calcipotriol and other vitamin D analogues, J. Am. Acad. Dermatol., 27, 1001 (1992). https://doi.org/10.1016/0190-9622(92)70302-V
  23. P. C. M. Van Der Kerkhof, Biological activity of vitamin D analogues in the skin, with special reference to antipsoriatic mechanisms, Br. J. Dermatol., 132, 675 (1995).
  24. C. Carlberg, Mechanisms of nuclear signalling by vitamin $ D_3 $. Interplay with retinoid and thyroid hormone signalling, Eur. J. Biochem., 23, 517 (1995).
  25. S. Christakos, M. Raval-Pandya, R. P. Werny, and W. Yang, Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin $ D_3 $, Biochem. J., 31, 361 (1996).
  26. I. Nemere, L. X. Zhou, and A. W. Norman, Nontranscriptional effects of steroid hormones, Receptor, 3, 277 (1993).
  27. A. W. Norman, I. Nemere, J. E. Bishop, K. E. Lowe, A.C. Maiyar, E. D. Collins, T. Taoka, I. Sergeev, and M. C. Farach-Carson, 1,25-(OH)2-vitamin D3: a steroid hormone that produces biologic effects via both genomic and nongenomic pathways, J. Steroid. Biochem. Molec. Biol., 41, 231 (1992). https://doi.org/10.1016/0960-0760(92)90349-N
  28. P. Boukamp, R. T. Petrussevska, J. Hornung, A. Markham, and N. E. Fusenig, Normal kertainization in a spontaneouly immortalized aneuploid human keratinocyte cell line, J. Cell Biol., 106, 761 (1988). https://doi.org/10.1083/jcb.106.3.761
  29. M. Seifert, W. Tilgen, and J. Reichrath, Expression of 25-hydoxyvitamin D-1alpha-hydroxylase(1$\alpha$OHase, CYP27B1) splice variants in HaCaT keratinocytes and other skin cells: modulation by culture conditions and UV-B treatment in vitro, Anticancer Res, 29, 3659 (2009).
  30. H. Hennings, D. Michale, C. Cheng, P. Steinert, K. Holbrook, and S. H. Yuspa, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell, 19, 245 (1980). https://doi.org/10.1016/0092-8674(80)90406-7
  31. M. J. Su, D. D. Bikle, M. L. Mancianti, and S. Pillai, 1,25-Dihydroxyvitamin $\alpha$ potentiates the keratinocyte response to calcium. J. Biol. Chem., 269, 14723 (1994).
  32. Y. Yada, T. Ozeki, S. Meguro, S. Mori, and Y. Nozawa, Signal transduction in the onset of terminal keratinocyte differentiation induced by 1 alpha-25- dihydroxyvitamin $\alpha$: Role of protein kinase C translocation, Biochem. Biophys. Res. Commun., 163, 1517 (1989). https://doi.org/10.1016/0006-291X(89)91152-2
  33. S. Pillai, D. D. Bikle, and P. M. Elias, 1,25- Dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation, J. Biol. Chem., 263, 5390 (1988).
  34. M. J. Su, D. D. Bikle, M. L. Mancianti, and S. Pillai, 1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium, J. Biol. Chem., 269, 14723 (1994).
  35. D. D. Bikle, Ng. Y. Oda, K. Hanley, K. Feingold, and Z. Xie, The vitamin D response element of involucrin gene mediates its regulation by 1,15- dihydroxyvitmin D3, J. Invest. Dermatol., 119, 1109 (2002). https://doi.org/10.1046/j.1523-1747.2002.19508.x