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Stochastic phenomena induce us to construct a probability model and structure our think-
ing; corresponding models help us to understand and interpret the reality. They in turn 
equip us with tools to recognize, reconstruct and solve problems. Therefore, various im-
plications in terms of methodology as well as epistemology naturally flow from different 
adoptions of models for probability. Right from the basic scenarios of different perspec-
tives to explore reality, students are occasionally exposed to misunderstanding and mis-
interpretations. With realistic examples a multi-faceted image of probability and different 
interpretation will be considered in mathematical modelling activities. As an exploratory 
investigation, mathematical modelling activity for probability learning was elaborated 
through semiotic analysis. Especially, the coherence structure in mathematical modelling 
discourse was reviewed form a semiotic perspective. The discourses sampled from group 
activities were analyzed on the basis of semiotic perspectives taxonomical coherence re-
lations.   
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1. INTRODUCTION 
 
With the steady advance of information technology, we are now living in a world 

characterized by complex systems which demand broader disciplines in mathematics. 
While we cope with the complex systems, we also begin to realize that there are funda-
mental limits: We also understand the necessity of mathematical formulation within the 
various type of uncertainty, which is characterized by probability measures. Since we are 
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surrounded, both in everyday and professional life by some degree of uncertainty, disci-
plines for probability and statistics should supply the framework and tools for the task of 
inference and decision. In fact, probability and statistics are considered as fearsome and 
anxiety-evoking subjects for high school students. To improve the situation, I think we 
have three ways in concert. 

First, to understand the difficulties that students have with comprehension of probabil-
ity, we must identify the cognitive structure of mathematical process. Radford (2001) in-
troduced a use of the “epistemic configuration of mathematical objects” construct, to-
gether with the processes in the onto-semiotic approach for a better understanding of 
mathematical tasks and cognitive processes. The Onto Semiotic Approach (OSA) defines 
as primary entities: Language, Situations, Procedures, Concepts, Propositions, Arguments 
(Godino, 2007, Gusmao, Santana, Cazorla & Cajaraville, 2010). With OSA, we focus on 
these entities, using the “onto semiotic analysis”, to characterize the institutional and per-
sonal meanings manifested during the mathematical activity and to analyze the semiotic 
conflicts during the resolution of concrete mathematical problems.  

Second, we have to provide intelligently challenging environment where stu-
dents have excess to more curiosity evoking contents of learning. The course 
could include the introduction of standard concepts with common probabilistic 
models. But it is not enough. In addition to standard techniques, they need good 
“models”. We should incorporate more sophisticated models into the regular cur-
riculum. Also, we know that much confusion — misinterpretations, misconcep-
tions, fallacies and pitfalls abound in the study of probability. Most texts and ex-
ercise books neglect to deal with ‘upsetting’ contents. The justification is that stu-
dents can understand and sort out those problems naturally after rigorous courses. 
However, teachers agree that if neglected, the misconceptions can’t be dissolved 
just by studying formal subjects. Most students accept what they learned in math-
ematics classes as the whole truth without noticing that it occasionally contradict 
to intuition. If unchallenged by “upsetting” conflicts in a class room situation, 
they will only rely on intuitions giving up their knowledge from formal studies of 
probability. I believe it is best to let students confront problems and pitfalls in 
open and careful discussion and clear unnecessary potential ‘upsets’. 

Third, we have to encourage mathematical discourse which plays a great role 
in developing students’ concepts. Active discourses help students with their rea-
soning and reflection on both the content as well as their understanding of it. Un-
derstanding a discourse is equivalent to constructing a coherent representation of 
that discourse. For example, coherence relations such as cause-consequence and 
claim-argument, is a necessary condition for a discourse representation to be co-
herent. The purpose of this paper is twofold. I will explore: 
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(1) The representation of mathematical discourse in mathematical modelling practice for 
the formation and critical understanding probability concept.  

(2) The relevance of applying taxonomic models of coherence relation for discord 
analysis by Sanders, Spooren & Noordman (1992) to the mathematical modelling 
discourse. 

 
 

2. ONTO SEMIOTIC APPROACHES FOR  
PROBABILITY MODELLING 

2.1. Interpretation of Probability Models 

Epistemologically, there is a basic difference between other domains of math-
ematics and that of probability. Probability objects, in contrast to other topics of 
mathematics, are never accessible by physical perception or by artifacts. The only 
way to have access to them is using signs and semiotic representations. For any 
modelling related to probability too, semiotic representations must be used even if 
there is the choice of the kind of semiotic representation. This specific epistemo-
logical situation of probability changes the cognitive use of signs. Elementary 
probability theory is an example for the analysis of basic epistemological prob-
lems of mathematical knowledge. Steinbring (2006) explained the sign system 
given as a concrete case by “fraction numerals”. However, the concept of proba-
bility has to be distinguished from the signs, which can be understood simply as a 
fraction. The signs in probability theory are different from the objects/reference 
contexts (here for example dice, then mainly mental objects, or random structures). 

According to the frame of the classic probability, the signs used to code proba-
bilities are fractions that indicate the proportion of favorable to unfavorable cases. 
However, these “ideal” values must be carefully distinguished from the “true” 
probabilities of a chance experiment of randomness. With experiments, the proba-
bility can be estimated with the help of empirical law of large numbers, thus of 
observed relative frequencies. 

As for the mathematical modelling of stochastic phenomena, the ever-present debate 
within epistemology of probability matters — objective vs. subjective. According to the 
objective definition, we conceive of probability as being something “out there” in the 
world to be analyzed in the same manner that we approach the physical world. Events 
have different and real physical probabilities that we can observe. On the other hand, we 
could choose to define probability not as an objective physical property in the world, but 
rather as a measure of man's subjective beliefs about what will happen. Within this sub-
jective definition, there exists no such thing as physical probabilities “out there” in the 
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world, because things in the world are all governed by the principle of causality that 
states nothing in the world is random or accidental. These problems of modelling make 
students modelling experience confusing. 

With the given situation in the epistemological triangle in Figure 1, one can regard the 
ideal fraction numerals as examples for the vertex “mathematical signs/symbols” in order 
to determine the searched probabilities. And the patterns of relative frequencies (as empir-
ically measured values), which can be observed in the real chance experiment, can be 
placed under the vertex “object/reference context”. 

 

 
 

Figure 1. The mediation between ideal and empirical probability in  
probability modelling 

 
How is a relation established between “object/reference context” and “mathe-

matical signs/symbols”? How in the example of probability a relation is estab-
lished between empirical and ideal probability? It would be too simple to claim 
that the (ideal) probability eventually becomes identical to the relative frequency 
(after a lot of trials). However, this relation is not a simple identity; it is based on 
a complex structure which is essentially determined by the epistemological condi-
tions of the probability concept. The preliminary, rather direct, relation between 
relative frequency and classic probability in the frame of the empirical law of 
large numbers, is an assertion which must itself be mathematically analyzed and 
described according to mathematical models and rules. The modelling perspective 
achieves a synthesis between these two approaches. Resent didactic studies have 
led to successful teachings based on modelling process using simulations of mod-
els in statistics (cf. Caput, Grad & Henry, 2011). 

2.2.  Representation transformations in Probability Modelling 

According to Duval (2006), mathematical activity intrinsically consists in the trans-
formation of representations, which consists of two types: Treatments and Conversions. 

Treatments (curved arrows in the Figure 2) are transformations of representations that 
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happen within the same register: for example, carrying out a algorithms while remaining 
strictly in the same notation system for representing the numbers, solving an equation or 
system of equations etc. 

Conversions (straight arrows in Figure 2) are transformations of representation that 
consist of changing a register without changing the objects being denoted: for example, 
passing from the natural language statement of a relationship to its notation using letters, 
passing from the algebraic notation for an equation to its graphic representation, diagrams, 
etc. 
 

 
 

Figure 2. Classification of the registers in mathematical modelling processes. 
 

According to his research, it appears that the cognitive processes in probability model-
ling are based on two quite different kinds of transformations of representations. Even if a 
single representation register is enough from a mathematical point of view, probability 
modelling activity also involves the simultaneous mobilization of at least two registers of 
representation, or the possibility of changing at any moment from one register to another. 
Every aspect of probability modelling can be possibly and plausibly explained by the 
above fifteen transformation. 
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3. METHODOLOGY 

3.1.  Discourse in Mathematical Modelling 

In the process of modelling, students use wide range of communication tools 
that go far beyond formal language. They use gestures, draw pictures and dia-
grams, make and use body language to draw attention. In talks, students are more 
inhibited and formal. In writing textual solutions, students are even more formal 
in translating their ideas into symbols and logic. And readers try to translate back. 
Mathematics in some sense has a common language: a language of symbols, tech-
nical definitions, computations, and logic which constitutes mathematical dis-
course as a whole. Thus, discourse in mathematical modelling is the window 
through which we can observe and understand the process of modeling activity. 
And for mathematics education, helping our students better master mathematical 
discourse is a major goal at all levels. The semiotic construction is powerful for 
modelling or reshaping our reality. Characteristic elements in mathematics such as 
abstraction, reason, objectivity and truth are viewed as particular types of semiotic 
choices. Abstraction is the re-contextualization where ‘superfluous’ information 
was discarded in the pursuit of knowledge. Objectivity is the organization of par-
ticular experimental and logical realms of meaning which are accompanied by a 
contracted interpersonal stance. From this view, objectivity becomes a ‘valued’ 
cultural product which is enacted semiotically. Reason is the valid rearrangement 
of relations which can be undertaken with available semiotic tools. And the truth 
is reduced to the nature of semiotic constructions found in the mathematical and 
scientific views of the world. Schonfield (2002) claims: 

Students are much more likely to develop productive habits of mind when they have the 
opportunity to practice those habits, and to develop a disposition toward sense-making 
when they are members of communities that engage (successfully!) in such practices. As 
suggested above, crafting such communities takes a good deal of work. 

 

For the investigation of mathematical discourses, several researchers (cf. O’Halloran, 
2005) working on the social semiotic theory known as Systematic Functional Linguistics 
(SFL) investigated the educational implications of multisemiotic approach to mathemat-
ics. 

The SFL approach to mathematics as a multisemiotic discourse is significant 
because it provides a framework to explain how language, mathematical symbol-
ism and visual images function intersemiotically. Apart from concerning itself 
with a limited semantic domain, mathematical discourse is successful. While 
mathematics evolved from a written discourse, the interaction between a teacher 
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and students involves spoken language as well as meta-language (verbalization of 
the symbolic and visual descriptions, gestures such as pointing, hand movements, 
facial expression, and body movements significant in classroom interactions). 
Brown (2000) and Sfard (2008) also suggested meaningful benefits from ‘collective 
discourses’ by reviewing how ideas can exist in discourses and social groupings. He 
provides detailed analyses of how people participate in the discourses of commu-
nities. His research provides an account of some basic ways in which individual 
learning arises from collaborative activities. It indicates how meaning can be en-
capsulated in symbols. It explains how children learn, and that creativity is possi-
ble, while suggesting ways to foster and to study learning. It describes mediations 
by which public discourses—as the foundational form of knowledge and group 
cognition—evolve and are individuated into private thinking. To nurture and en-
courage the discourse of modeling activity practically, Yackel (1996) suggested 
five Sociomathematical Norms: 
 

(1)  Students ask each other questions that press for mathematical reasoning, justifica-
tion, and understanding.  

(2)  Students explain their solutions using mathematical argumentation.  

(3)  Students reach consensus using mathematical reasoning and proof.  

(4)  Students compare their strategies looking for mathematically important similarities 
and differences.  

(5)  Students use mistakes as an opportunity to rethink their conceptions of mathematical 
ideas and examine contradictions. Mistakes support new learning about mathematics.  

3.2. Coherence relations in Mathematical Discourse 

Understanding a discourse among students may be regarded as the construction of a 
mental representation of that discourse by the teachers. An acceptable discourse represen-
tation has a property that distinguishes it from the representation a teacher might make of 
a blind set of utterances: The representations of the fragments in the discourse should be 
linked coherently. 

Sanders, Spooren & Noordman (1992) conducted a classification experiment using 
segments of written discourse and extracted different classes of coherence relations dis-
tinguished in the taxonomy intuitively and psychologically plausible for practical applica-
tion to the wide range of discourses.  

Twelve class of coherence relations are postulated as cognitive primitives (Table 1 be-
low). 

The primary distinction in the taxonomy is that between causality and addition. Of the 
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four logical operators, causality (implication) and addition (conjunction) are chosen as 
starting points for the taxonomy. Secondly, a ‘pragmatic’ relation refers to the illocution-
ary meaning of an utterance, whereas a ‘semantic’ relation refers to the locutionary mean-
ing. 

The third primitive is called order of the segments: Given the two basic opera-
tion, the speaker can connect two discourses segments in two orders. The fourth 
primitive is polarity. Positive relations are typically expressed by such conjuctions 
as and and because, where as negative relations are expressed by but and although, 
etc. 

Table 1. Typology of Classes of Coherence Relations  

Class Relations 
Basic 

Operation 
Source Order Polarity 

1 Cause/Consequence Causal semantic basic Positive 

2 
 

Contrative/Cause/ 
Consequence 

Causal semantic basic Negative 

3 Consequence/Cause Causal semantic non-basic Positive 

4 
 

Contrastive/Consequence
/Cause 

Causal semantic non-basic Negative 

5 
Argument/Claim 
Instrument/Goal 

Condition/Consequence 
Causal pragmatic Basic Positive 

6 
Contrastive/Argument/ 

Claim 
Causal pragmatic Basic Negative 

7 
Claim/Argument 
Goal/Instrument 

Consequence/Condition 
Causal pragmatic non-basic Positive 

8 
Contrastive Claim/ 

Argument 
Causal pragmatic non-basic Negative 

9 List Additive semantic n.a. Positive 

10 
Exception 
Opposition 

Additive semantic n.a.  

11 Enumeration Additive pragmatic n.a. Positive 

12 Exception Additive pragmatic n.a. Negative 

 
On the basis of evidence with a priory, plausibility of above categorization of 

coherence relation, the taxonomy is an explicit theory of coherence that can gen-
erate predictions about discourse understanding. 
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4. METHODOLOGY AND RESULTS 

4.1.  Bertrand Paradox and Modelling 

In 1889, French mathematician Joseph Bertrand proposed a problem: 

 “What is the probability that the chord randomly chosen from a circle is longer than a 
side of the inscribed equilateral triangle of the circle?”  

  

Solution 1. A chord is longer if the angle between the chord and the tangent line passing 
an endpoint of the chord on the circle is within the range 60°~120°. Thus, the probability 
is 1/3. 

Solution 2. A chord is longer if its midpoint lies within a concentric circle of half the orig-
inal radius; so, since the area of small circle is a quarter that of the big circle, the proba-
bility is 1/4. 

Solution 3. A chord is longer if its midpoint lies on the inner half of the radius bisecting it; 
so, since the midpoint may lie anywhere on this radius, the probability is 1/2. 

It was called a paradox because the problem has at least three solutions that contradict 
to each other but each is derived from seemingly decent premises and reasoning. It is a 
well known example that shows “choosing by random" sometimes are not enough. In 
other words, we must know on which way to find probability and the reason for that 
statement are many different results of the problem what depends on which way we have 
used calculation. 
 

Scenario I 

A student ninja has been told to cut a pizza (circle with radius 1) because he needs 
practice (he needed practicing his sword maneuvers). The pizza is cut from the center (he 
has bad aim) so that the straight length of his slice varies, but each straight length should 
be parallel to each other (he wants such practice). The pizza company can only use pizzas 
with slices greater than √3. If the ninja cuts pizza too far away from the center the length 
is too small and pizza is wasted. What is the chance that a pizza becomes useful if it is cut 
randomly? 
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Discourse 1.  

Model 1 
 

We can suppose ninja cut parallel to AB, a 
side of equilateral triangle inscribed in the 
circle. The random cut will be like dotted line 
which is less than or one unit away from the 
center O. In this case, although specific, we 
can imagine that the sample space is the di-
ameter OD of length 1 because the random 
cut hits OD at P always. For the dotted line to 
be longer than√3  , P should lie away less 
than the distance from M to O the center of 
the circle. The point M (Midpoint of OD). 
So, the required probability is equivalent to 
the likelihood that the point P falls on the line 
segment OM since the chord is longer than 
√3. Therefore the probability is 

 p OM

OC
 

 
Scenario II 

Imagine a circular lake with radius one mile. In this lake, lives a beautiful mermaid. 
And you want to take a picture of her when she comes into shore. The problem is that you 
don’t know where exactly she will emerge on the lake shore. So you plant yourself at 
some point along the edge. The lens of the camera can only focus properly when the sub-
ject of the picture is further than root 3 miles away from you. For example, if distance 
between two of you is less than root 3 miles you have bad picture and distance greater 
than root 3 miles gives you a good picture. What is the chance that you take a good pic-
ture? 
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Discourse 2. 

 

Model 2 

 

Although the photographer takes a picture at ran-
dom place, we can choose one point A, the vertex 
of equilateral triangle inscribed without loss of gen-
erality. Suppose that the mermaid appears on the 
point P on the circumference of the circle randomly. 
Although point P is random, it is certain that the 
point P lies on the arc BC to have the distance from 
A to P is not less than √3. And the required proba-
bility is the ratio of the length of arc BC, not major, 
to the circumference of the lake. That is, 
  

p
the length of arc BC

the length of circumference
   

1
3

 

 
Scenario III 

Once upon a time there was monster living in the center of a dark crater. The monster 
had fire breath. Foolish pray would land in the crater and the monster would unleash his 
fire breath in a circular sweep. And of course, if the pray happened to be within his range, 
death. But if the prey was far enough away, it could avoid the spray by running perpen-
dicular to the circle of fire. What is the chance that the pray could be caught? 
 

Discourse 3. 

 
 

 
 

Model 3 
 

Suppose a point O be the center of the small 
concentric circle which is inscribed in the equi-
lateral triangle, which again is inscribed in a 
circle of radius 1. Now, for the chords of the 
circle be not smaller than√3, the distance from 
O to the midpoints of the chord P should be not 

greater than  . Which means that P’s should lie 

in the circle of radius . But, the sample space 

of P is the inner part of big circle. And the re-
quired probability is given by 

p
Area of small circle
Area of big circle

π 1
2
1

1
4
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4.2.  Analysis: Coherence Structure, Treatment and Conversion 

Group activity based on a probability modeling project was designed and con-
ducted. Each group consisted of 4 students of year 11 in HYFL and each group 
was supposed to model all of the problems of the 3 scenarioes exhaustively. 6 
groups were assessed. The activity was conducted after the Bertrand Paradox was 
introduced.  

Table 2.  Typology of Classes of Coherence Relations with Hierarchy of 
Representation 

Summary specimens of Discourse(Textual) 
Coherence Relation 

Class Type
Treatment/ 
Conversion 

(Because of the condition 1) We can suppose ninja 
cut parallel to AB, a side of equilateral triangle in-
scribed in the circle 

Causal, Semantic 
Basic order,  
Positive (Class 1) 

(3)(4)(7) 
(11)(12) 

The random cut will be like dotted line which is less 
than or one unit away from the center O. 

Additive Semantic 
Positive (Class 9) (10)(13) 

In this case, although specific, we can imagine that 
the sample space is the diameter OD of length 1, be-
cause a random cut hits OD at P always. 

Causal, Pragmatic 
Nonbaic order  
Negative (Class 8) 

(3)(4)(7) 
(11)(12) 

For the dotted line to be longer than√3 , P should lie 
away less than the distance from M to O the center of 
the circle. the point M (Midpoint). 

Causal Pragmatic 
Basic order Positive 
(Class 5) 

(9)(10)(1) 
(3) 

The required probability is equivalent to the likeli-
hood that the point P falls on the line segment OM, 
since the chord is longer than √3. 

Causal, Semantic 
Nonbasic order,  
Positive 
(Class 3) 

(10)(15) 

Therefore the probability is p
OM

OC
 

Additive Pragmatic 
Positive (Class 11) 

(5)(8) 

Alhough the photographer take a picture at random 
place, we can the vertex A of equilateral triangle in-
scribed without loss of generality. 

Causal, Pragmatic 
Basic order,  
Negative (Class 6) 

(3)(11)(12) 

Although point P is random, it is certain that the point 
P lies on the arc BC to have the distance from A to P 
is not less than √3. 

Causal, Semantic 
Basic order,  
Negative (Class 2) 

(2)(3)(4) 
(10) 

And the probability is the ratio of the length of arc 
BC, not a major, to the circumference of the lake. 

Additive, Semantic 
Negative (Class 10) 

(5)(6) 

The length of OP become less than  , because the 

length of the chord is not smaller than√3 

Causal Semantic 
Nonbasic order,  
Negative (Class 4) 

(1)(2)(5) 

Which means that P’s should lie in the circle of radi-
us 

  for the length of OP less than . 

Causal, Pragmatic 
Non basic, Positive 
(Class 7) 

(9)(10) 

But, the sample space for P is the inner part of big 
circle. 

Additive, Pragmatic, 
Negative Class 12. 

(9)(15) 
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The activity was six hour out-of-class task after school over a one-week period 
designed to provide summative feedback to students according to the competence 
in developing a mathematical model as well as the solution summaries of textual 
discourse. During the activity, dialogues were observed and were incorporated for 
the final solution report. Three summaries out of six groups were chosen random-
ly as a specimen of the required analysis. 

 
 

5. CONCLUSION 
 
According to the analysis based on the taxonomy coherence relation and the represen-

tation transformation among registers, discourses in modelling probability can be effec-
tively observed and meaningfully understood with reliable implication for assessment. 
 

1. Most of the discourses sampled in summaries for each scenario are coherent.  

2. There exists complicated hierarchies and transformation of representation in prob-
ability modelling, which calls for further investigation. 

3. Semantic and Pragmatic relation, as a source of coherence relation, seems to be one 
of the most important factors of representation shift, which could provide teachers 
with the deep understanding of modelling probability. 

4. To encourage the mathematical discourse of students, teachers should create an envi-
ronment so that students can engage in group activities for cooperative learning. 
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