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HILBERT 2-CLASS FIELD TOWERS OF INERT IMAGINARY
QUADRATIC FUNCTION FIELDS

Hwanyup Jung

Abstract. In this paper we study the infiniteness of Hilbert 2-class field towers of
inert imaginary quadratic function fields over Fq(T ), where q is a power of an odd
prime number.

1. Introduction and Statement of the Results

Let k = Fq(T ) be a rational function field over the finite field Fq of q elements,
∞ = (1/T ) and A = Fq[T ]. For any finite separable extension F of k, write OF for
the integral closure of A in F and HF for the Hilbert class field of F with respect
to OF (see [4]). Let ` be a prime number. Let F

(`)
0 = F and F

(`)
n+1 be the Hilbert

`-class field of F
(`)
n for n ≥ 0, i.e., F

(`)
n+1 is the maximal extension of F

(`)
n inside H

F
(`)
n

whose degree over F
(`)
n is a power of `. The sequence of fields

F = F
(`)
0 ⊂ F

(`)
1 ⊂ · · · ⊂ F (`)

n ⊂ · · ·
is called the Hilbert `-class field tower of F . We say that the Hilbert `-class field
tower of F is infinite if F

(`)
n 6= F

(`)
n+1 for each n ≥ 0. Let ClF and O∗F be the ideal

class group and the group of units of OF , respectively. For any multiplicative abelian
group A, write r`(A) = dimF`

(A/A`) for the `-rank of A. Schoof [6] has shown that
if r`(ClF ) ≥ 2 + 2

√
r`(O∗F ) + 1, then the Hilbert `-class field tower of F is infinite.

This is a function field analog of Golod-Shafarevich.
Now, we assume that q is odd with q ≡ 3 mod 4. In [2, 3], we study the infiniteness

of Hilbert 2-class field towers of ramified imaginary or real quadratic function fields
over k. The aim of this paper is to study the infiniteness of Hilbert 2-class field towers
of inert imaginary quadratic function fields over k. Let F be an inert imaginary
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quadratic function field over k, i.e., F is a quadratic extension of k in which ∞ is
inert. Fix a generator γ of F∗q . Let P be the set of monic irreducible polynomials in
A. Then F can be written as F = k(

√
D) with D = γP1 · · ·Pt, Pi ∈ P for 1 ≤ i ≤ t

and 2|deg D. Here, D is uniquely determined by F and write DF = D. We say
that DF is special if 2| deg Pi for all 1 ≤ i ≤ t. For 0 6= N ∈ A, write ω(N) for
the number of distinct monic irreducible divisors of N . It is known ([1, Corollary
3.5]) that r2(ClF ) is equal to ω(DF ) or ω(DF ) − 1 according as DF is special or
non-special. Since O∗F = F∗q (i.e., r2(O∗F ) = 1), by Schoof’s Theorem, F has infinite
Hilbert 2-class field tower if r2(ClF ) ≥ 5.

For an inert imaginary quadratic function field F over k, let sF be the number
of monic irreducible divisors of DF of odd degree. Since deg DF is even, sF is a
nonnegative even integer. Let ϑF be 1 or 0 according as sF = 0 or sF ≥ 2. Let
r4(ClF ) = r2(Cl2F ) be the 4-rank of ClF . Then we have

Theorem 1.1. Assume that q ≡ 3 mod 4. Let F be an inert imaginary quadratic
function field over k. If r4(ClF ) ≥ 3 + ϑF , then the Hilbert 2-class field tower of F

is infinite.

For any positive even integer n and integers r, s with 0 ≤ s ≤ r, let Zr;n be the set
of inert imaginary quadratic function fields F with r2(ClF ) = r and deg(DF ) = n,
and Zr,s;n be the subset of Zr;n consisting of F ∈ Zr;n with r4(ClF ) = s. Let Z∗r,s;n
be the subset of Zr,s;n consisting of F ∈ Zr,s;n whose Hilbert 2-class field tower is
infinite. We define a density %∗r,s by

%∗r,s = lim inf
n→∞
n:even

|Z∗r,s;n|
|Zr;n| .

Then we have

Theorem 1.2. Assume that q ≡ 3 mod 4. We have %∗3,s ≥ 2−3(23−1)−1 for s = 1, 2
and %∗4,s ≥ 2−6(24 − 1)−1 for 0 ≤ s ≤ 3.

We remark that Theorem 1.2 means that a positive proportion of inert imaginary
quadratic function fields F with r2(ClF ) = r have infinite Hilbert 2-class field towers
and r4(ClF ) = s for r = 3, s = 1, 2 or r = 4, 0 ≤ s ≤ 3.

2. Preliminaries

2.1. Rédei-matrix and 4-rank of class group Let F be an inert imaginary
quadratic function field over k with DF = γP1 · · ·Pt. Let di ∈ F2 be defined by
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di ≡ deg Pi mod 2 for 1 ≤ i ≤ t. Let MF = (eij)1≤i,j≤t be a t × t matrix over F2,
where eij ∈ F2 is defined by (Pi

Pj
) = (−1)eij for 1 ≤ i 6= j ≤ t and the diagonal entries

eii ∈ F2 are defined to satisfy the relation di =
∑t

j=1 eij . We associate a (t + 1)× t

matrix RF over F2 to F as follows:

• If DF is non-special, RF is the (t + 1) × t matrix obtained from MF by
adding (d1 · · · dt) in the last row.

• If DF is special, RF is the (t + 1)× t matrix obtained from MF by adding
(eB1 . . . eBt) in the last row, where B is a monic polynomial in A such
that (B) = NF/k(B), Bσ−1 = (x) with NF/k(x) ∈ F∗q \ F∗2q and eBi ∈ F2 is
defined by ( B

Pi
) = (−1)eBi . (Here, σ is the generator of Gal(F/k).)

Then we have ([1, Corollary 3.8])

(2.1) r4(ClF ) = ω(DF )− rankRF .

2.2. Some lemmas Let E and K be finite geometric separable extensions of k

such that E/K is a cyclic extension of degree `, where ` is a prime number not
dividing q. Let S∞(K) be the set of primes of K lying above ∞. Let γE/K be the
number of prime ideals of OK that ramify in E and ρE/K be the number of primes
p∞ in S∞(K) that ramify or inert in E. In [2, Proposition 2.1], we have shown that
the Hilbert `-class field tower of E is infinite if

(2.2) γE/K ≥ |S∞(K)| − ρE/K + 3 + 2
√

`|S∞(K)|+ (1− `)ρE/K + 1.

Now, by using this result, we give some sufficient conditions for an inert imaginary
quadratic function field F to have infinite Hilbert 2-class field tower.

Lemma 2.1. Let F be an inert imaginary quadratic function field over k. If there
exists a nonconstant divisor D′ of DF such that either D′ or DF /D′ is monic of
even degree and (D′

Pi
) = 1 for monic irreducible divisors Pi (1 ≤ i ≤ 4) of DF , then

F has infinite Hilbert 2-class field tower.

Proof. Let K = k(
√

D′) and E = KF . Since P1, P2, P3 and P4 split in K, we have
γE/K ≥ 8. We also have |S∞(K)| = ρE/K = 2 or (|S∞(K)|, ρE/K) = (1, 0) according
as D′ is monic of even degree or DF /D′ is monic of even degree. Then E has infinite
Hilbert 2-class field tower. It can be easily shown that E is contained in F

(2)
1 . Thus

F also has infinite Hilbert 2-class field tower. ¤

Lemma 2.2. Let F be an inert imaginary quadratic function field over k. If DF

has two distinct nonconstant monic divisors D1 and D2 of even degrees satisfying
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(D1
Pi

) = (D2
Pi

) = 1 for monic irreducible divisors Pi (i = 1, 2) of DF , then F has
infinite Hilbert 2-class field tower.

Proof. Let K = k(
√

D1,
√

D2) and E = KF . Since P1, P2 and ∞ splits completely
in K, E is contained in F

(2)
1 . Since γE/K ≥ 8 and |S∞(K)| = ρE/K = 4, we see that

E has infinite Hilbert 2-class field tower. Hence, F also has infinite Hilbert 2-class
field tower. ¤

2.3. Some asymptotic results Let P be the set of all monic irreducible poly-
nomials in A = Fq[T ]. For positive integers n and t, write P(n, t) for the set
of monic square free polynomials N ∈ A with deg N = n and ω(N) = t, and
P ′(n, t) for the subset of P(n, t) consisting of N = P1 · · ·Pt ∈ P(n, t) such that
deg Pi 6= deg Pj for 1 ≤ i 6= j ≤ t. Let P2(n, t) be the subset of P(n, t) con-
sisting of N = P1 · · ·Pt ∈ P(n, t) such that deg Pi is even for all 1 ≤ i ≤ t and
P ′2(n, t) = P2(n, t) ∩ P ′(n, t). As n →∞, we have

|P(n, t)| = qn(log n)t−1

(t− 1)!n
+ O

(qn(log n)t−2

n

)
,(2.3)

|P2(n, t)| = qn(log n)t−1

(t− 1)!2t−1n
+ O

(qn(log n)t−2

n

)
,(2.4)

|P(n, t) \ P ′(n, t)| = o
(qn(log n)t−1

n

)
.(2.5)

For N = P1 · · ·Pt,M = Q1 · · ·Qt ∈ P ′(n, t), we say that N and M are equivalent
if deg Pi ≡ deg Qi mod 2 for 1 ≤ i ≤ t and (Pi

Pj
) = (Qi

Qj
) for 1 ≤ i < j ≤ t. Write

N (N) for the set of polynomials in P ′(n, t) which are equivalent to N . Then we
have ([2, Proposition 2.9])

(2.6) |N (N)| = 21− (t2+t)
2 · qn(log n)t−1

(t− 1)!n
+ O

(qn(log n)t−2

n

)

as n →∞.
For a positive even integer n and a positive integer t, let R′(n, t) = P ′(n, t) \

P ′2(n, t). Then we have ([3, Proposition 2.4])

|R′(n, t)| = (1− 21−t)
qn(log n)t−1

(t− 1)!n
+ O

(qn(log n)t−2

n

)
.(2.7)

3. Proof of Theorem 1.1

Let F be an inert imaginary quadratic function field with DF = γP1 · · ·Pt. Let
sF be the number of monic irreducible divisors Pi of DF of odd degree. Since
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deg DF is even, sF is an nonnegative even integer. Assume that deg Pi is odd for
1 ≤ i ≤ sF . Write ~Ri for the i-th row vector of RF for 1 ≤ i ≤ t and ~0 for the
zero row vector. By Schoof’s Theorem, the Hilbert 2-class field tower of F is infinite
if r2(ClF ) ≥ 5. Hence, it remains to prove the cases (r2(ClF ), r4(ClF )) = (4, 4) if
sF = 0 and (r2(ClF ), r4(ClF )) = (3, 3), (4, 3) or (4, 4) if sF ≥ 2.

3.1. Case r2(ClF ) = r4(ClF ) = 4 with sF = 0 and DF = γP1P2P3P4. In this
case, by (2.1), RF is a zero matrix, so (P1

Pi
) = (P2

Pi
) = 1 for i = 3, 4. Hence F has an

infinite Hilbert 2-class field tower by Lemma 2.2.

3.2. Case r2(ClF ) = r4(ClF ) = 3 with sF ≥ 2 and DF = γP1P2P3P4. In this case,
we have rankRF = 1 by (2.1). Since ~R5 6= ~0, we have ~Ri ∈ {~0, ~R5} for 1 ≤ i ≤ 4.
But, since

∑4
j=1 e1j = 1, ~R1 6= ~0 and ~R1 6= ~R5, which is a contradiction. Hence this

case can not occur.

3.3. Case r2(ClF ) = 4, r4(ClF ) = 3 with sF ≥ 2 and DF = γP1P2P3P4P5. In this
case, we have rankRF = 2 by (2.1). Note that ~R6 6= ~0. Since

∑5
j=1 e1j = 1, we

have ~R1 6∈ {~0, ~R6}. Then {~R1, ~R6} is a basis of the row space of RF . Hence ~Ri ∈
{~0, ~R1, ~R6, ~R1 + ~R6} for all 1 ≤ i ≤ 5. Assume that sF = 2. Then ~R6 = (1 1 0 0 0).
If ~Ri = ~0 for some 3 ≤ i ≤ 5, say ~R5 = ~0, then (P5

Pi
) = 1 for 1 ≤ i ≤ 4, so F has

infinite 2-class field tower by Lemma 2.1. We may assume ~Ri 6= ~0 for all 3 ≤ i ≤ 5.
Since

∑5
j=1 eij = 0 for 3 ≤ i ≤ 5, we have ~R3 = ~R4 = ~R5 = ~R6. Then we have

(P3P4
Pi

) = (P3P5
Pi

) = 1 for i = 1, 2, so F has infinite Hilbert 2-class field tower by
Lemma 2.2.

Assume that sF = 4. Then ~R6 = (1 1 1 1 0). If ~R5 = ~0, then (P5
Pi

) = 1 for
1 ≤ i ≤ 4, so F has infinite 2-class field tower by Lemma 2.1. We may assume
~R5 6= ~0. Since

∑5
j=1 e5j = 0, we have ~R5 = ~R6. Since

∑5
j=1 eij = 1 for 1 ≤ i ≤ 4, we

have ~Ri ∈ {~R1, ~R1 + ~R6}. If three of ~R1, ~R2, ~R3, ~R4 are equal, say ~R1 = ~R2 = ~R3,
then (P1P2

Pi
) = (P1P3

Pi
) = 1 for i = 4, 5, so F has infinite Hilbert 2-class field tower by

Lemma 2.2. We may assume that ~R1 = ~R2 and ~R3 = ~R4 = ~R1 + ~R6. Then, by the
quadratic reciprocity law ([5, Theorem 3.3]), we have e11 + e12 = 1, e13 = e14 = e11

and e15 = 1, so
∑5

j=1 e1j = 0, which is a contradiction.

3.4. Case r2(ClF ) = r4(ClF ) = 4 with sF ≥ 2 and DF = γP1P2P3P4P5. In
this case, we have rankRF = 1 by (2.1). Since ~R6 6= ~0, we have ~Ri ∈ {~0, ~R6} for
1 ≤ i ≤ 5. But, since

∑5
j=1 e1j = 1, ~R1 6= ~0 and ~R1 6= ~R6, which is a contradiction.

Hence this case can not occur.
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4. Proof of Theorem 1.2

For any positive even integer n and positive integer t, let R(n, t) = P(n, t) \
P2(n, t) and R′(n, t) = P ′(n, t) \ P ′2(n, t).

Lemma 4.1. As n →∞, we have |R(n, t + 1) ∪ P2(n, t)| ∼ |R′(n, t + 1)|.
Proof. By (2.4), (2.5) and (2.7), as n →∞, we have

|P2(n, t)| = O
(qn(log n)t−1

n

)
, |P2(n, t) \ P ′2(n, t)| = o

(qn(log n)t−1

n

)
,

|R′(n, t + 1)| = O
(qn(log n)t

n

)
, |R(n, t + 1) \ R′(n, t + 1)| = o

(qn(log n)t

n

)
.

Then |P2(n, t) \P ′2(n, t)| = o(|P ′2(n, t)|) and |R(n, t+1) \R′(n, t+1)| = o(|R′(n, t+
1)|). Also by (2.7), |P ′2(n, t)| = o(|R′(n, t + 1)|). Hence we get the result. ¤

Recall that for an inert imaginary quadratic function field F , r2(ClF ) is equal to
ω(DF ) or ω(DF )− 1 according as DF is special or non-special. Let n be a positive
even integer and r, s be integers with 0 ≤ s ≤ r. Then we have

Zr;n =
{
k(

√
γN) : N ∈ R(n, r + 1) ∪ P2(n, r)

}
.

Let Z̄r;n be the subset of Zr;n consisting of k(
√

γN) with N ∈ R′(n, r + 1) and
Z̄∗r,s;n = Z̄r;n ∩ Z∗r,s;n. By Lemma 4.1, we have

(4.1) %∗r,s = lim inf
n→∞

|Z̄∗r,s;n|
|Z̄r;n|

.

By (2.7), we have

|Z̄r;n| = (1− 2−r)
qn(log n)r

r!n
+ O

(qn(log n)r−1

n

)
(4.2)

as n →∞. For any N ∈ R′(n, r+1), let S(N) be the set of inert imaginary quadratic
function fields k(

√
γM) with M ∈ N (N). Then S(N) is a subset of Z̄r;n and by

(2.6), we have

(4.3) |S(N)| = 2−
r(r+3)

2 · qn(log n)r

r!n
+ O

(qn(log n)r−1

n

)

as n →∞. Thus, from (4.2) and (4.3), we get

(4.4) lim
n→∞

|S(N)|
|Z̄r;n|

= 2−
r(r+1)

2 (1− 2−r)−1.
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4.1. %∗3,s Consider an inert imaginary quadratic function field F = k(
√

γN) with
N = P1P2P3P4 ∈ R′(n, 4) such that 2 - deg Pi, 2| deg Pj and (Pi

Pj
) = 1 for i ∈ {1, 2}

and j ∈ {3, 4}. Then r2(ClF ) = 3 and F has infinite Hilbert 2-class field tower by
Lemma 2.2. Moreover, every fields in S(N) also has infinite Hilbert 2-class field
tower.
• Case (P3

P4
) = −1. In this case, the matrix RF is




1 0 0 0
1 0 0 0
0 0 1 1
0 0 1 1
1 1 0 0


 if (P1/P2) = 1,




0 1 0 0
0 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0


 if (P1/P2) = −1

whose rank is 3, so r4(ClF ) = 1. Hence F ∈ Z̄∗3,1;n and S(N) ⊂ Z̄∗3,1;n. By (4.4), we
have

%∗3,1 ≥ lim
n→∞

|S(N)|
|Z̄3;n|

= 2−3(23 − 1)−1.

• Case (P3
P4

) = 1. In this case, the matrix RF is



1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0


 if (P1/P2) = 1,




0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0


 if (P1/P2) = −1

whose rank is 2, so r4(ClF ) = 2. Hence F ∈ Z̄∗3,2;n and S(N) ⊂ Z̄∗3,2;n. By (4.4), we
have

%∗3,2 ≥ lim
n→∞

|S(N)|
|Z̄3;n|

= 2−3(23 − 1)−1.

4.2. %∗4,s Consider an inert imaginary quadratic function field F = k(
√

γN) with
N = P1P2P3P4P5 ∈ R′(n, 5) such that 2 - deg Pi for i ∈ {1, 2}, 2| deg Pj for j ∈
{3, 4, 5} and (Pi

Pj
) = 1 for i ∈ {1, 2}, j ∈ {3, 4}. Then r2(ClF ) = 4 and F has infinite

Hilbert 2-class field tower by Lemma 2.2. Moreover, every fields in S(N) also has
infinite Hilbert 2-class field tower.
• Case ( Pi

P5
) = −1 for i ∈ {1, 3}, ( Pi

P5
) = 1 for i ∈ {2, 4} and (P3

P4
) = −1. In this

case, the matrix RF is



0 0 0 0 1
1 0 0 0 0
0 0 0 1 1
0 0 1 1 0
1 0 1 0 0
1 1 0 0 0


 if (P1/P2) = 1,




1 1 0 0 1
0 1 0 0 0
0 0 0 1 1
0 0 1 1 0
1 0 1 0 0
1 1 0 0 0


 if (P1/P2) = −1

whose rank is 5, so r4(ClF ) = 0. Hence F ∈ Z̄∗4,0;n and S(N) ⊂ Z̄∗4,0;n. By (4.4), we
have

%∗4,0 ≥ lim
n→∞

|S(N)|
|Z̄4;n|

= 2−6(24 − 1)−1.
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• Case (P1
P5

) = −1, ( Pi
P5

) = 1 for 2 ≤ i ≤ 4 and (P3
P4

) = −1. In this case, the
matrix RF is


0 0 0 0 1
1 0 0 0 0
0 0 1 1 0
0 0 1 1 0
1 0 0 0 1
1 1 0 0 0


 if (P1/P2) = 1,




1 1 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
1 0 0 0 1
1 1 0 0 0


 if (P1/P2) = −1

whose rank is 4, so r4(ClF ) = 1. Hence F ∈ Z̄∗4,1;n and S(N) ⊂ Z̄∗4,1;n. By (4.4), we
have

%∗4,1 ≥ lim
n→∞

|S(N)|
|Z̄4;n|

= 2−6(24 − 1)−1.

• Case ( Pi
P5

) = 1 for 1 ≤ i ≤ 4 and (P3
P4

) = −1. In this case, the matrix RF is



1 0 0 0 0
1 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0
1 1 0 0 0


 if (P1/P2) = 1,




0 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0
1 1 0 0 0


 if (P1/P2) = −1

whose rank is 3, so r4(ClF ) = 2. Hence F ∈ Z̄∗4,2;n and S(N) ⊂ Z̄∗4,2;n. By (4.4), we
have

%∗4,2 ≥ lim
n→∞

|S(N)|
|Z̄4;n|

= 2−6(24 − 1)−1.

• Case ( Pi
P5

) = 1 for 1 ≤ i ≤ 4 and (P3
P4

) = 1. In this case, the matrix RF is



1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0


 if (P1/P2) = 1,




0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 0 0 0


 if (P1/P2) = −1

whose rank is 2, so r4(ClF ) = 3. Hence F ∈ Z̄∗4,3;n and S(N) ⊂ Z̄∗4,3;n. By (4.4), we
have

%∗4,3 ≥ lim
n→∞

|S(N)|
|Z̄4;n|

= 2−6(24 − 1)−1.
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