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HILBERT 2-CLASS FIELD TOWERS OF INERT IMAGINARY
QUADRATIC FUNCTION FIELDS

HwanyuP JUNG

ABSTRACT. In this paper we study the infiniteness of Hilbert 2-class field towers of
inert imaginary quadratic function fields over F4(T), where ¢ is a power of an odd
prime number.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let k = Fy(T) be a rational function field over the finite field F, of ¢ elements,

oo = (1/T) and A = F,[T]. For any finite separable extension F' of k, write Op for

the integral closure of A in F' and Hf for the Hilbert class field of F' with respect

to OF (see [4]). Let ¢ be a prime number. Let Féz) = F and Ffli)l be the Hilbert

f-class field of Fy) for n > 0, i.e., Fr(ﬁl is the maximal extension of F,ﬁf) inside H 20
)

whose degree over Fr(f is a power of £. The sequence of fields

F=F"cFY%c...cr¥c...

is called the Hilbert £-class field tower of F. We say that the Hilbert ¢-class field
tower of F'is infinite if Fg) #* Fr(le for each n > 0. Let Clr and O% be the ideal
class group and the group of units of O, respectively. For any multiplicative abelian
group A, write 7¢(A) = dimp,(A/A?) for the f-rank of A. Schoof [6] has shown that
if 7¢(Clp) > 2+ 2./r¢(O5) + 1, then the Hilbert ¢-class field tower of F is infinite.
This is a function field analog of Golod-Shafarevich.

Now, we assume that ¢ is odd with ¢ = 3 mod 4. In [2, 3], we study the infiniteness
of Hilbert 2-class field towers of ramified imaginary or real quadratic function fields
over k. The aim of this paper is to study the infiniteness of Hilbert 2-class field towers

of inert imaginary quadratic function fields over k. Let F be an inert imaginary
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quadratic function field over k, i.e., F' is a quadratic extension of k£ in which oo is
inert. Fix a generator v of F;. Let PP be the set of monic irreducible polynomials in
A. Then F can be written as F = k(v/D) with D =~P,--- P, P,e Pfor 1 <i<t
and 2|deg D. Here, D is uniquely determined by F' and write Dp = D. We say
that Dp is special if 2|degP; for all 1 < i < ¢. For 0 # N € A, write w(NV) for
the number of distinct monic irreducible divisors of N. It is known ([1, Corollary
3.5]) that r2(ClF) is equal to w(Dp) or w(Dp) — 1 according as Dp is special or
non-special. Since Of = Fy (i.e., r2(0%) = 1), by Schoof’s Theorem, F' has infinite
Hilbert 2-class field tower if ro(Clp) > 5.

For an inert imaginary quadratic function field F' over k, let sp be the number
of monic irreducible divisors of D of odd degree. Since deg D is even, sg is a
nonnegative even integer. Let Jp be 1 or 0 according as sp = 0 or sp > 2. Let
r4(Clp) = ro (Cl%) be the 4-rank of Clrp. Then we have

Theorem 1.1. Assume that ¢ = 3 mod 4. Let F be an inert imaginary quadratic
function field over k. If r4(Clp) > 3 + Op, then the Hilbert 2-class field tower of F
s infinite.

For any positive even integer n and integers r, s with 0 < s < r, let Z,,,, be the set
of inert imaginary quadratic function fields F' with r9(Clr) = r and deg(Dp) = n,
and Z; s, be the subset of Z,.,, consisting of F' € Z,.,, with r4(Clp) = s. Let Z7 .,
be the subset of Z, ., consisting of F' € Z, ,., whose Hilbert 2-class field tower is
infinite. We define a density oy ; by
| :,s;n|

* 1 .
0r,s = liminf

n:even ‘ r,n|

Then we have

Theorem 1.2. Assume that ¢ = 3 mod 4. We have g3 ; > 273(25 1) fors=1,2
and gf , > 2702 —1)7! for 0 < s < 3.

We remark that Theorem 1.2 means that a positive proportion of inert imaginary
quadratic function fields F' with r9(Clr) = r have infinite Hilbert 2-class field towers
and r4(Clp) =sforr=3,s=1,20rr=4,0<s<3.

2. PRELIMINARIES

2.1. Rédei-matrix and 4-rank of class group Let F' be an inert imaginary
quadratic function field over k& with Dp = vP;--- P;. Let d; € Fo be defined by
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d; = deg Py mod 2 for 1 < i <t. Let Mp = (ej;)i<ij<t be a t x t matrix over Fa,
where ¢;; € Fy is defined by (%) = (—1)% for 1 < i # j <t and the diagonal entries
ei; € Fo are defined to satisfy the relation d; = 23:1 e;jj. We associate a (t +1) x ¢

matrix Ry over [Fy to I as follows:

e If Dp is non-special, Rp is the (¢ + 1) x ¢t matrix obtained from Mp by
adding (dy --- d;) in the last row.
e If Dp is special, Rp is the (¢t + 1) X ¢t matrix obtained from Mp by adding
(ep1 ... ept) in the last row, where B is a monic polynomial in A such
that (B) = Np/x(B), B! = (x) with Np/,(z) € F; \ F;? and ep; € Fa is
defined by (%) = (—1)¢Bi. (Here, o is the generator of Gal(F/k).)
Then we have ([1, Corollary 3.8])

(2.1) r4(Clp) = w(Dp) — rank Rp.

2.2. Some lemmas Let £ and K be finite geometric separable extensions of k
such that F/K is a cyclic extension of degree ¢, where ¢ is a prime number not
dividing q. Let S (K) be the set of primes of K lying above co. Let yg/x be the
number of prime ideals of Ok that ramify in E' and pg/x be the number of primes
Poo In Soo (K) that ramify or inert in E. In [2, Proposition 2.1], we have shown that
the Hilbert ¢-class field tower of E is infinite if

(22) x> 1S (B)| = pryic +3+21/USu(K)| + (1 — Oppyc + 1.

Now, by using this result, we give some sufficient conditions for an inert imaginary

quadratic function field F' to have infinite Hilbert 2-class field tower.

Lemma 2.1. Let F be an inert imaginary quadratic function field over k. If there
exists a nonconstant divisor D' of Dp such that either D' or Dp/D’ is monic of
even degree and (%) =1 for monic irreducible divisors P; (1 <i <4) of D, then
F has infinite Hilbert 2-class field tower.

Proof. Let K = k(\/ﬁ) and E = KF. Since Py, P», P3 and Py split in K, we have
Ve Kk = 8. We also have [Sw (K)| = pg/x = 2 or (|Soo(K)|, pr/i) = (1,0) according
as D’ is monic of even degree or Dp/D’ is monic of even degree. Then E has infinite
Hilbert 2-class field tower. It can be easily shown that E is contained in Fl(z). Thus
F also has infinite Hilbert 2-class field tower. 0

Lemma 2.2. Let F be an inert imaginary quadratic function field over k. If Dp

has two distinct nonconstant monic divisors D1 and Do of even degrees satisfying
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(%_1) = (%_2) = 1 for monic irreducible divisors P; (i = 1,2) of Dp, then F has
infinite Hilbert 2-class field tower.

Proof. Let K = k(v/D1,v/D3) and E = KF. Since Pi, P, and oo splits completely
in K, F is contained in Fl(Q). Since vg/x > 8 and |S(K)| = pg/x = 4, we see that
FE has infinite Hilbert 2-class field tower. Hence, F' also has infinite Hilbert 2-class
field tower. O

2.3. Some asymptotic results Let P be the set of all monic irreducible poly-
nomials in A = [F,[T]. For positive integers n and ¢, write P(n,t) for the set
of monic square free polynomials N € A with degN = n and w(N) = t, and
P'(n,t) for the subset of P(n,t) consisting of N = P;---P, € P(n,t) such that
deg P; # degPj for 1 < i # j < t. Let Pa(n,t) be the subset of P(n,t) con-
sisting of N = P;--- P, € P(n,t) such that deg P; is even for all 1 < i < ¢ and
Ph(n,t) = Pa(n,t) NP (n,t). As n — oo, we have

"(log n t—1 "(logn t—2
(23) Pnso) = TUER (0,
"(logn)t~1 "(logn)t—2
(2.4) Pa(n, )] = (qtfllg),z)n o LloBny
(2.5) P(n, )\ P (n, )| = O<W>

For N=P - P, M =Q1---Q; € P'(n,t), we say that N and M are equivalent
if deg P; = deg@; mod 2 for 1 < ¢ <t and (%) = (8—;) for 1 <¢ < j <t. Write
N (N) for the set of polynomials in P’(n,t) which are equivalent to N. Then we
have ([2, Proposition 2.9])

N

_ -0 g"(logn)"! q"(logn
(2.6) IN(N)| =2 T +o( > )

as n — oo.
For a positive even integer n and a positive integer t, let R'(n,t) = P'(n,t) \
P)(n,t). Then we have ([3, Proposition 2.4])

t—1 2

(1))

n

q"(logn)

7 Rmyl=0-2 T

3. PROOF OF THEOREM 1.1

Let F' be an inert imaginary quadratic function field with Dp = vP; --- P,. Let

sg be the number of monic irreducible divisors P; of Dp of odd degree. Since
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deg Dr is even, sg is an nonnegative even integer. Assume that deg P; is odd for
1 <4 < sp. Write RZ for the i-th row vector of Rp for 1 < ¢ < t and 0 for the
zero row vector. By Schoof’s Theorem, the Hilbert 2-class field tower of F' is infinite
if 7o(Clp) > 5. Hence, it remains to prove the cases (r2(Clp),r4(Clp)) = (4,4) if
Sp = 0 and (TQ(CZF),T4(CZF)) = (3, 3), (4,3) or (4,4) if Sp > 2.

3.1. Case r3(Clp) = r4(Clp) = 4 with sp = 0 and Dp = vP; PoP3Ps. In this
case, by (2.1), Rp is a zero matrix, so (%) = (%) =1 for i = 3,4. Hence F has an

infinite Hilbert 2-class field tower by Lemma 2.2.

3.2. Case r3(Clp) = r4(Clp) = 3 with sp > 2 and Dp = yP; P, P3Py. In this case,
we have rank Rp = 1 by (2.1). Since R}, # 0, we have R; € {6, ﬁ5} for 1 < < 4.
But, since Z?Zl erj =1, R +£ 0 and R #* Rs, which is a contradiction. Hence this

case can not occur.

3.3. Case r9(Clp) = 4,r4(Clp) = 3 with sp > 2 and Dp = vP; P,P3P;Ps. In this
case, we have rank Rp = 2 by (2.1). Note that Rg # 0. Since Z?:l e;j = 1, we
have R; ¢ {0, Rg}. Then {R;, R} is a basis of the row space of Rp. Hence R; €
{6, Rl,éﬁ,ﬁl + }_?:6} for all 1 <i < 5. Assume that sp = 2. Then Rg = (11000).
Ifﬁizﬁforsome3§i§5,Sayﬁ5:6,then(%):1f0r1§i§4,sthas
infinite 2-class field tower by Lemma 2.1. We may assume R; #£0 for all 3 <i < 5.
Since 2?21 eij = 0 for 3 < i <5, we have ng = E4 = §5 = R};. Then we have
(PS?I:‘*) = (P3Tf5) = 1 for i = 1,2, so F has infinite Hilbert 2-class field tower by
Lemma 2.2.

Assume that sp = 4. Then Rg = (111 10). If R5 = 0, then (%) = 1 for
1 <4 <4, so F has infinite 2-class field tower by Lemma 2.1. We may assume
Rs #£ 0. Since Z?:l es5; = 0, we have Rs = Rg. Since 235':1 eij =1for1 <i<4, we
have R; € {R1, R1 + Rg}. If three of Ry, Ro, R3, Ry are equal, say Ry = Ry = R3,
then (PlT];?) = (PlTI;?’) =1 for i = 4,5, so F' has infinite Hilbert 2-class field tower by
Lemma 2.2. We may assume that Rl = ]3@ and ﬁg = é4 = ]%1 + ﬁ6. Then, by the
quadratic reciprocity law ([5, Theorem 3.3]), we have ej; + e19 = 1,e13 = e14 = €11

and e;5 = 1, so Z?:1 e1j; = 0, which is a contradiction.

3.4. Case TQ(CZF) = 1"4(CZF) = 4 with S| > 2 and DF = ’}/P1P2P3P4P5. In
this case, we have rank Rp = 1 by (2.1). Since Rg # 0, we have R; € {0, Rg} for
1 <7 < 5. But, since Z?Zl elj =1, Ry #£ 0 and R, + R};, which is a contradiction.

Hence this case can not occur.
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4. PROOF OF THEOREM 1.2

For any positive even integer n and positive integer ¢, let R(n,t) = P(n,t) \

Pa(n,t) and R'(n,t) = P'(n,t) \ Pj(n,t).
Lemma 4.1. As n — oo, we have |R(n,t + 1) UPa(n,t)| ~ R (n,t + 1)].
Proof. By (2.4), (2.5) and (2.7), as n — oo, we have

logn)t—t

Pan.t)] = 0L osn)”

) IPat )\ Py 1) = o TUEY

R (n,t+1)| = O(q”(logn)t>’ IR(n,t+1)\ R'(n,t+1)| = O(q?l(logn)t)

n n

Then |Pa(n,t) \ Ph(n,t)| = o(|Ps(n,t)|) and |R(n,t+1)\ R (n,t+1)| = o |R/(n,t +

1)]). Also by (2.7), |P5(n,t)] = o(|R/(n,t + 1)|). Hence we get the result. O
Recall that for an inert imaginary quadratic function field F, ro(Clr) is equal to

w(Dp) or w(Dp) — 1 according as Dp is special or non-special. Let n be a positive

even integer and 7, s be integers with 0 < s < r. Then we have

oy = {k(m) : N € R(n,7 + 1) UPa(n,r)}.

Let Z..,, be the subset of Z,.,, consisting of k(v/YN) with N € R/(n,7 + 1) and
AP Zrm Nz By Lemma 4.1, we have

r,sn r,8mn"
ZF .
(4.1) o, = liminf |_7"|
’ n=00 | Zy
By (2.7), we have
= (] r n(] r—1
(4.2) | Zyin| = (1 — 2*?)@ n 0(%)
rn n

asn — oo. Forany N € R'(n,r+1), let S(N) be the set of inert imaginary quadratic
function fields k(v/yM) with M € N(N). Then S(N) is a subset of Z,.,, and by
(2.6), we have

o o_rex3) ¢"(logn)” q"(logn) 1
(4.3) S(N)| =27 o)

as n — oo. Thus, from (4.2) and (4.3), we get

(4.4) lim ISl _ st

n—0oo | Zpnl

(1—2")"L
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4.1. o5, Consider an inert imaginary quadratic function field F' = k(v/yN) with
N = PyP,P;Py € R'(n,4) such that 2 { deg P;, 2| deg P; and (%) =1 fori e {1,2}
and j € {3,4}. Then r2(Clp) = 3 and F has infinite Hilbert 2-class field tower by
Lemma 2.2. Moreover, every fields in S(IV) also has infinite Hilbert 2-class field

tower.

e Case (%) = —1. In this case, the matrix Rp is
10 0 0 01 0 0
o 0 1 1|it(P/R) =1, [0 o 1 1|if(P/Py)=—1
881}1(12_’0011112_
1 1 0 0 1 1 0 0
whose rank is 3, so r4(Clp) = 1. Hence F € Z5 ., and S(N) C Z3.,,. By (4.4), we
have
S(N
05, > lim [S(V)] =232 — 1)L,

n—00 |23;n| B

e Case (%) = 1. In this case, the matrix R is

if (P1/P) =1, if (P1/P)=-1

1
1
0
0
1

=N eNeNe]
coocoo
(=NeNeRoio]
=N eNeie)
coooo
(=NeNeRelo]

1
1
0
0
1
whose rank is 2, so r4(Clr) = 2. Hence F' € Z3,,, and S(N) C Z3,,,. By (4.4), we

have

. . |S(N . _

4.2. o}, Consider an inert imaginary quadratic function field F' = k(y/yN) with
N = PiP,P3sPyPs € R'(n,5) such that 2 { deg P; for i € {1,2}, 2|deg P; for j €
{3,4,5} and () = 1 for i € {1,2},j € {3,4}. Then r3(Clp) = 4 and F has infinite
Hilbert 2-class field tower by Lemma 2.2. Moreover, every fields in S(N) also has
infinite Hilbert 2-class field tower.

e Case (%) = —1 fori e {1,3}, (%) =1 fori € {2,4} and (%) = —1. In this
case, the matrix Rp is

00 0 0 1 1 1 0 0 1

1 0 0 0 0 01 0 0 0

00 0 1 1] - . 00 0 1 1] - .
00 1 1 0 if (P1/P) =1, 00 1 1 0 if (P1/Py) =—1
1 01 0 0 1 01 0 0

1 1 0 0 0 1 1 0 0 0

whose rank is 5, so r4(Clr) = 0. Hence F € Zj ., and S(N) C Z;.,. By (4.4), we

have
S(N
QZ,O > lim 7‘ (V)] = 2_6(24 — 1)_1.

n—0o0 ‘24;71’ B
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o Case (%) = -1, (%) 1 for2 <i <4 and (%) = —1. In this case, the
matrix Rp is
00 0 0 1 110 0 1
1 00 0 0 01 0 0 0
00 1 o f(P/P)=1 |4 o 1 0 ofif(P/P)=-
100 0 1 100 0 1
1 1.0 0 0 1 1.0 0 0
whose rank is 4, so r4(Clp) = 1. Hence F € Zj,,, and S(N) C Z; ,.,,. By (4.4), we

have S(N
oy 2 tim IS o6yt gyt

n—00 |Z4n|

e Cuse (%) =1for1<i<4and (H) = —1. In this case, the matrix Rp is
1 00 0 0 01 0 0 0
1 00 0 0 0 1 0 0 0
00 1 1 0 00 1 1 0]
o 0 1 1 o f(P/P2)=1 o0 1 1 o f(P/P2)=~
00 0 0 0 00 0 0 0
1 1 0 0 O 1 1 0 0 O

whose rank is 3, so r4(Clr) = 2. Hence F € Zj,,, and S(N) C Z;,.,,. By (4.4), we

have

S(N
T oo | Zygn|
e Case (%) =1for1<i<4and (%) = 1. In this case, the matrix Rp is
1 0 0 0 0 01 0 0 0
1 0 0 0 0 01 0 0 0
00 0 0 0. 00 0 0 0
0 0 0 0 0 if (Pl/PZ) =1 0 0 0 0 0 (Pl/P2) = -
00 0 0 O 0 0 0 0
11 0 0 0 1 1 0 0

0
0
whose rank is 2, so r4(Clp) = 3. Hence F € Zj 3, and S(N) C Zj 3,,,. By (4.4), we

have

*3 > lim |S_(N)’ — 276(24 _ 1)71

- oo |Z4;n|
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