DOI QR코드

DOI QR Code

An Experimental Study on Strength Properties, Size Effect, and Fatigue Behaviour of Concrete under Biaxial Flexural Stress State

이방향 휨응력상태의 콘크리트 강도 특성, 크기효과 및 피로거동에 관한 실험적 연구

  • Zi, Goangseup (School of Civil, Environmental & Architectural Engineering, Korea University) ;
  • Kim, Jihwan (School of Civil, Environmental & Architectural Engineering, Korea University)
  • 지광습 (고려대학교 건축.사회환경공학과) ;
  • 김지환 (고려대학교 건축.사회환경공학과)
  • Received : 2012.10.10
  • Accepted : 2013.03.07
  • Published : 2013.05.30

Abstract

In this study, flexural strength properties of concrete under biaxial stress state were experimentally investigated. Tests for size effect and fatigue behaviour of concrete under biaxial stress were carried out by the ASTM C 1550 and the biaxial flexure test(BFT). The results given by the biaxial tests were compared to those by the third-point bending test. Test results showed that biaxial flexural strengths obtained from the ASTM C 1550 and the biaxial flexure test are greater than the strength by the third-point bending test. As the size increases, the uniaxial and biaxial flexural strength decreases. However, the slope of the size effect of the biaxial strength was greater than that of the uniaxial strength. Finally, the fatigue response of concrete under the biaxial stress state was similar with that for uniaxial stress state.

본 논문에서는 이방향 응력상태에서의 콘크리트 강도 특성과 크기효과 그리고 피로거동에 관한 연구를 수행하였다. 이를 위해 ASTM C 1550 시험법과 이방향 휨강도 시험(biaxial flexure test; BFT)을 적용하여 크기효과 및 피로시험을 실시하였으며, 단순보의 3등분점 하중에 의한 콘크리트 휨강도 시험(third-point bending test) 결과와 비교하였다. 실험 결과 3등분점 재하 휨강도 시험에 의한 일방향 응력상태의 강도보다는 ASTM C 1550 시험법과 이방향 휨강도 시험법에 의한 이방향 응력상태의 강도가 더 큰 것으로 측정되었다. 3등분점 재하 휨강도 시험, ASTM C 1550, 이방향 휨강도 시험법 모두 시편의 크기가 증가함에 따라 강도는 감소하는 것으로 관찰되었으며, 이방향 휨인장강도의 크기 효과가 일방향 휨인장강도의 크기효과보다 더 큰 것으로 확인되었다. S-N 곡선에 의한 일방향과 이방향 휨강도의 피로 수명은 유사한 것으로 분석되었다.

Keywords

References

  1. ASTM (2004). ASTM C 39/C 39M: Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA.
  2. ASTM (2010). ASTM C 78/C 78M: Standard test method for flexural strength of concrete (Using simple beam with third-point loading), ASTM International, West Conshohocken, PA, USA.
  3. ASTM (2008). ASTM C 1550-08: Standard test method for flexural toughness of fiber-reinforced concrete (Using centrally-loaded round panel), ASTM International, West Conshohocken, PA, USA.
  4. Bažant, Z. P. (1984). "Size effect in blunt fracture: concrete, rock, metal." Journal of Engineering Mechanics, ASCE, Vol. 110, No. 4, pp. 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  5. Bazant, Z. P. and Planas, J. (1998). Fracture and size effect: in Concrete and Other Quasibrittle Materials, CRC Press, New York.
  6. Holmen, J. O. (1982). "Fatigue of concrete by constant and variable amplitude loading." ACI Materials Journal, Vol. 75, pp. 71-110.
  7. Kim, J., Kim, D. J. and Zi, G. (2013). "Improvement of the biaxial flexure test method for concrete." Cement and Concrete Composites, Vol. 37, pp. 154-160. https://doi.org/10.1016/j.cemconcomp.2012.11.001
  8. Kim, J., Yi, C. K. and Zi, G. (2012). "Biaxial flexural strength of concrete by two different methods." Magazine of Concrete Research, Vol. 64, No. 12, pp. 1057-1065. https://doi.org/10.1680/macr.11.00178
  9. Nelson, E. L., Carrasquillo, R. L. and Fowler. D. W. (1988). "Behavior and failure of high-strength concrete subjected to biaxial-cyclic compression loading." ACI Materials Journal, Vol. 85, No. 4, pp. 248-253.
  10. Neville, A. M. (1995). Properties of concrete, 4th edn. Longman, Harlow, England.
  11. Subramaniam, K. V., Popovics, J. S. and Shah, S. P. (1999). "Fatigue behavior of concrete subjected to biaxial stresses in the compression-tension region." ACI Materials Journal, Vol. 96, No. 6, pp. 663-669.
  12. Subramaniam, K. V. and Shah, S. P. (2003). "Biaxial tension fatigue response of concrete." Cement and Concrete Composites, Vol. 25, No. 6, pp. 617-623. https://doi.org/10.1016/S0958-9465(02)00075-6
  13. Su, E. C. M. and Hsu, T. T. C. (1988). "Biaxial compression fatigue and discontinuity of concrete." ACI Materials Journal, Vol. 85, No. 3, pp. 178-188.
  14. Zi, G., Oh, H. and Park, S. K. (2008). "Novel indirect tensile test method to measure the biaxial tensile strength of concretes and other quasibrittle materials." Cement and Concrete Research, Vol. 38, No. 6, pp. 751-756. https://doi.org/10.1016/j.cemconres.2008.02.002
  15. Zi, G., Kim, J. and Bazant, Z. P. (2013). "Size effect on biaxial tensile strength of concrete." ACI Materials Journal, - in press.

Cited by

  1. Flexural Behavior Evaluation of Two Types Fiber Reinforced Shotcrete using Round Panel Test vol.11, pp.4, 2015, https://doi.org/10.15683/kosdi.2015.11.4.607