DOI QR코드

DOI QR Code

Stochastic Probability Model for Preventive Management of Armor Units of Rubble-Mound Breakwaters

경사제 피복재의 유지관리를 위한 추계학적 확률모형

  • 이철응 (강원대학교 공과대학 토목공학과) ;
  • 김상욱 (강원대학교 공과대학 토목공학과)
  • Received : 2012.10.17
  • Accepted : 2013.04.05
  • Published : 2013.05.30

Abstract

A stochastic probability model based on the non-homogeneous Poisson process is represented that can correctly analyze the time-dependent linear and nonlinear behaviors of total damage over the occurrence process of loads. Introducing several types of damage intensity functions, the probability of failure and the total damage with respect to mean time to failure has been investigated in detail. Taking particularly the limit state to be the random variables followed with a distribution function, the uncertainty of that would be taken into consideration in this paper. In addition, the stochastic probability model has been straightforwardly applied to the rubble-mound breakwaters with the definition of damage level about the erosion of armor units. The probability of failure and the nonlinear total damage with respect to mean time to failure has been analyzed with the damage intensity functions for armor units estimated by fitting the expected total damage to the experimental datum. Based on the present results from the stochastic probability model, the preventive management for the armor units of the rubble-mound breakwaters would be suggested to make a decision on the repairing time and the minimum amounts repaired quantitatively.

하중 발생과정에 따른 누적피해의 선형뿐만 아니라 비선형 거동을 해석할 수 있는 추계학적 확률모형이 수립되었다. 여러 종류의 피해강도함수를 도입하여 내용년수의 파괴확률과 비선형 누적피해의 거동이 자세히 해석되었다. 특히 본 연구에서는 저항한계를 임의의 분포함수를 갖는 확률변수로 취급하여 한계상태의 불확실성을 고려하였다. 또한 피복재에 대한 피해수준을 이용하여 처음으로 추계학적 확률모형을 경사제에 적용하였다. 실험 자료와의 비교를 통해 추정된 경사제 피복재에 대해 피해강도함수를 이용하여 내용년수에 따른 파괴확률과 비선형 누적피해의 거동을 해석하였다. 마지막으로 해석 결과를 이용하여 경사제 피복재의 보수 보강 시점과 최소한의 보수 보강규모를 정량적으로 산정할 수 있는 예방적 유지관리 방법을 제시하였다.

Keywords

References

  1. Ang, A. H-S., and Tang, W. H. (1975). Probability concepts in engineering planning and design, Vol. 1, John Wiley & Sons, N.Y.
  2. Lee, C-E. (2012). "Stochastic reliability analysis of armor units of rubble-mound breakwaters subject to multiple loads." Korean Society of Coastal and Ocean Engineers, Vol. 24, No. 2, pp. 138- 148 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.2.138
  3. Li, C. Q., and Zhao, J. M. (2010). "Time-dependent risk assessment of combined overtopping and structural failure for reinforced concrete coastal structures." J. Waterway, Port, Coast., and Ocn. Eng., ASCE, Vol. 136, No. 2, pp. 97-103. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000031
  4. Madsen, H. O., Krenk, S. and Lind, N. C. (1986). Methods of structural safety, Prentice-Hall, Englewood Cliffs.
  5. Melby, J. A. (1999). Damage progression on breakwaters, Ph.D. thesis, Dept. of Civ. Engrg., Univ. of Delware, USA.
  6. Melchers, R. E. (1999). Structural reliability analysis and prediction, Wiley, Chichester.
  7. Mori, Y., and Ellingwood, B. R.(1994) "Maintaining reliability of concrete structures. I. Role of inspection/repair." J. Struct. Eng., ASCE, Vol. 120, No. 3, pp. 824-845. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:3(824)
  8. Nakagawa, T. (1976). "On a replacement problem of cumulative model." Op. Res. Quart., Vol. 27, No. 4, pp. 895-900. https://doi.org/10.1057/jors.1976.178
  9. Rosenblueth, E. (1976). "Optimum design for infrequent disturbances." J. Struct. Div., ASCE, Vol. 102, No. ST9, pp. 1807-1825.
  10. Rosenblueth, E., and Mendoza, E. (1971). "Reliability optimization in isostatic structures." J. Eng. Mech. Div., ASCE, Vol. 97, No. EM6, pp. 1625-1642.
  11. Sanchez-Silva, M., Klutke, G.-A., and Rosowsky, D. V. (2011). "Lifecycle performance of structures subject to multiple deterioration mechanisms." Struct. Saf., 33, pp. 206-217. https://doi.org/10.1016/j.strusafe.2011.03.003
  12. Speijker, L. J. P., van Noortwijk, J. M., Kok, M., and Cooke, R. M. (2000). "Optimal maintenance decisions for dikes." Prob. Eng. and Inf. Sc., Vol. 14, No. 1, pp. 101-121.
  13. Taylor, H. M., and Karlin, S. (1984). An introduction to stochastic modeling, Academic Press, N.Y.
  14. van der Meer, J. W. (1988). "Deterministic and probabilistic design of breakwater armor layers." J. Waterway, Port, Coast., and Ocn. Eng., ASCE, Vol. 114, No. 1, pp. 66-80. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  15. van der Weide, J. A. M., and Pandey, M. D. (2011). "Stochastic analysis of shock process and modelling of condition-based maintenance." Rel. Eng. and Sys. Saf., 96, pp. 619-626. https://doi.org/10.1016/j.ress.2010.12.012
  16. van der Weide, J. A. M., Suyono, and van Noortwijk, J. M. (2008). "Renewal theory with exponential and hyperbolic discounting." Prob. Eng. and Inf. Sc., Vol. 22, No. 1, pp. 53-74.
  17. van Noortwijk, J. M., and Gelder, P. H. (1996). "Optimal maintenance decisions for berm breakwaters." Struct. Saf., Vol. 18, No. 4, pp. 293-309. https://doi.org/10.1016/S0167-4730(96)00023-9
  18. van Noortwijk, J. M., and Klatter, H. E. (1999). "Optimal inspection decisions for the block mats of the Eastern-Scheldt barrier." Rel. Eng. and Sys. Saf., 65, pp. 203-211. https://doi.org/10.1016/S0951-8320(98)00097-0

Cited by

  1. Discounted Cost Model of Condition-Based Maintenance Regarding Cumulative Damage of Armor Units of Rubble-Mound Breakwaters as a Discrete-Time Stochastic Process vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.109
  2. Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters vol.25, pp.5, 2013, https://doi.org/10.9765/KSCOE.2013.25.5.276