DOI QR코드

DOI QR Code

Physicochemical and Functional Properties of Kochujang with Broccoli Leaf Powder

브로콜리잎 분말 첨가 재래식 고추장의 이화학적 및 기능적 특성

  • Oh, You-Sung (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Baek, Jin-Woo (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Park, Kyeong-Yeol (Dept. of Food Bioengineering, Jeju National University) ;
  • Hwang, Joon-Ho (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Lim, Sang-Bin (Biotechnology Regional Innovation Center, Jeju National University)
  • 오유성 (제주대학교 생명과학기술혁신센터) ;
  • 백진우 (제주대학교 생명과학기술혁신센터) ;
  • 박경열 (제주대학교 식품생명공학과) ;
  • 황준호 (제주대학교 생명과학기술혁신센터) ;
  • 임상빈 (제주대학교 생명과학기술혁신센터)
  • Received : 2013.01.21
  • Accepted : 2013.04.09
  • Published : 2013.05.31

Abstract

Home-made broccoli Kochujang (HMBK) was prepared with the addition of 5% broccoli leaf powder. Its physicochemical and functional properties were measured in extracts (80% methanol, 80% ethanol, and distilled water) and compared with home-made Kochujang (HMK) and factory-produced Kochujang (FPK). Total phenolic content (TPC) was 22% higher in methanol extract from HMBK (524.2 GAE/100 g) compared to HMK (431.0 GAE/100 g). TPC was 8% higher in ethanol extract from HMBK (541.9 GAE/100 g) compared to HMK (499.9 GAE/100 g). DPPH radical scavenging activity was 1.6 times higher in the methanol extracts from HMBK than HMK. In contrast there was no difference in DPPH radical scavenging activity between HMBK and HMK. Oxygen radical absorbance capacities in methanol and ethanol extracts from HMBK were similar to HMK, but both were higher than extracts from FPK (55% and 23% higher, respectively). Inhibition of angiotensin I converting enzyme activity in methanol extracts from HMBK was similar to HMK, but it was 2.6 times higher than inhibition activities from FPK. Interestingly, only ethanol extract from HMBK showed a 10.7% and 18.3% inhibition on cell growth of the human colon adenocarcinoma grade II cell line (HT-29) and human lung carcinoma cell line (NCI-H1229), respectively. These results indicate home-made Kochujang with broccoli leaf powder contains high total phenolics, antioxidant activities, and cancer cell growth inhibition activities.

기능성 고추장을 제조할 목적으로 브로콜리잎 분말을 첨가하여 고추장을 제조한 후 80% 메탄올, 80% 에탄올, 물로 추출하여 총페놀 함량과 항산화 및 항암활성을 측정하여 재래식 고추장 및 개량식 고추장과 비교하였다. 총페놀 함량은 80% 메탄올과 80% 에탄올 추출물에서 브로콜리 고추장이 각각 524.2와 541.9 mg GAE/100 g으로 재래식 고추장의 431.0과 499.9 mg GAE/100 g보다 각각 22%와 8% 높았다. DPPH radical 소거능은 80% 메탄올 추출물에서는 브로콜리 고추장이 재래식 고추장보다 1.6배 높았으나, 80% 에탄올 추출물에서는 브로콜리 고추장과 재래식 고추장이 비슷하였다. 활성산소 흡수능력은 80% 메탄올과 80% 에탄올 추출물에서 브로콜리 고추장이 재래식 고추장보다 높았으나 유의적인 차이를 나타내지 않았으며 개량식 고추장보다는 각각 55%와 23% 높았다. ACE 저해 활성은 80% 메탄올 추출물에서 브로콜리 고추장은 재래식 고추장과는 유사하였으나 개량식 고추장보다는 2.6배 높았다. 항암활성은 브로콜리 고추장의 80% 에탄올 추출물인 경우 대장암 세포주(HT-29)와 폐암 세포주(NCI-H1229)에서 각각 10.7과 18.3%의 생장 저해효과를 나타내었다. 따라서 브로콜리잎의 건조분말을 첨가하여 재래식 방법으로 제조한 고추장은 총페놀 함량이 높으며, 재래식 고추장이나 공장식 고추장보다 다소 높은 항산화 활성과 암세포 성장 저해효과를 나타내어 브로콜리 분말의 첨가에 의해 고추장의 기능성이 향상되었다.

Keywords

References

  1. Shin DH, Kim DH, Choi U, Lim DK, Lim MS. 1996. Studies on taste components of traditional Kochujang. Korean J Food Sci Technol 28: 152-156.
  2. Jung YC, Choi WJ, Oh NS, Han MS. 1996. Distribution and physiological characteristics of yeasts in traditional and commercial Kochujang. Korean J Food Sci Technol 28:253-259.
  3. Shin DH, Kim DH, Choi U, Lim MS, An EY. 1997. Changes in microflora and enzymes activities of traditional Kochujang prepared with various raw materials. Korean J Food Sci Technol 29: 901-906.
  4. Lim SI, Choi SY, Cho GH. 2006. Effects of functional ingredients addition on quality characteristics of Kochujang. Korean J Food Sci Technol 37: 779-784.
  5. Shin HJ, Shin DH, Kwak YS, Choo JJ, Kim SY. 1999. Changes in physiochemical properties of Kochujang by red ginseng addition. J Korean Soc Food Sci Nutr 28: 760-765.
  6. Hwang SJ, Kim JY, Eun JB. 2011. Physical characteristics and changes in functional components of Gochujang with different amounts of sweet persimmon power. J Korean Soc Food Sci Nutr 40: 1668-1674. https://doi.org/10.3746/jkfn.2011.40.12.1668
  7. Suh HJ, Chung SH, Yoo KW, Son HS. 1997. Inhibitory effect of kochujang on angiotensin converting enzyme. J Allied Health Sci 23: 21-25.
  8. Shin ZI, Ahn CW, Nam HS, Lee HJ, Lee HJ, Moon TH. 1995. Fractionation of angiotensin converting enzyme (ACE) inhibitory peptides from soybean paste. Korean J Food Sci Technol 27: 230-234.
  9. Kim SO, Kong CS, Kil JH, Kim JY, Han MS, Park KY. 2005. Fermented wheat grain products and kochujang inhibit the growth of AGS human gastric adenocarcinoma cells. J Food Sci Nutr 10: 349-352. https://doi.org/10.3746/jfn.2005.10.4.349
  10. Stoewsand GS. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetable - a review. Food Chem Toxicol 33: 537-543. https://doi.org/10.1016/0278-6915(95)00017-V
  11. Kwon YD, Ko EY, Hong SJ, Park SW. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor J Hort Sci Technol 26: 344-349.
  12. Lee HS, Park YW. 2005. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. J Korean Soc Food Sci Nutr 34:759-764. https://doi.org/10.3746/jkfn.2005.34.6.759
  13. AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemist, Washington, DC, USA. Chapter 4, p 33-36.
  14. Zhang Q, Zhang J, Shen J, Silva A, Dennis D, Barrow CJ. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol 18:445-450. https://doi.org/10.1007/s10811-006-9048-4
  15. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  16. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437-4444. https://doi.org/10.1021/jf0201529
  17. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4626. https://doi.org/10.1021/jf010586o
  18. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of ${\alpha}$-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci Biotech Biochem 61:177-178. https://doi.org/10.1271/bbb.61.177
  19. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1348. https://doi.org/10.1016/0006-2952(71)90292-9
  20. Ferrari M, Fornasiero MC, Isetta AM. 1990. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131: 165-172. https://doi.org/10.1016/0022-1759(90)90187-Z
  21. Jeong DY, Shin DH, Song MR. 2001. Studies on the physicochemical characteristics of Sunchang traditional Kochujang. Korean J Food Culture 16: 260-267.
  22. Kim MR, Kim JH, Wi DS, Na JH, Sok DH. 1999. Volatile sulfur compounds, proximate components, minerals, vitamin C content and sensory characteristics of the juices of kale and broccoli leaves. J Korean Soc Food Sci Nutr 28:1201-1207.
  23. Youn K, Kim J, Yeo HR, Jun M. 2011. Improving the functional quality of Kochujang added with red ginseng and fermented wild herbal extract. J Korean Soc Food Sci Nutr 40: 1675-1679. https://doi.org/10.3746/jkfn.2011.40.12.1675
  24. Shin DH, Kim DH, Choi U, Lim DK, Lim MS. 1996. Studies on the physicochemical characteristics of traditional Kochujang. Korean J Food Sci Technol 28: 157-161.
  25. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. 2001. ${\alpha}$-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49: 1948-1951. https://doi.org/10.1021/jf001251u
  26. Kuba M, Tanaka K, Tawata S, Takeda Y, Yasuda M. 2003. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci Biotech Biochem 67: 1278-1283. https://doi.org/10.1271/bbb.67.1278
  27. Kim JY, Park KW, Yang HS, Cho YS. 2005. Anticancer and immuno-activity of methanol extract from onion Kochujang. Korean J Food Preserv 12: 173-178.

Cited by

  1. Quality and Antioxidant Properties of White Breads Enhanced with Broccoli (Brassica oleracea L.) Powder vol.31, pp.5, 2015, https://doi.org/10.9724/kfcs.2015.31.5.614
  2. Antiproliferative Activity of Vegetable Soup in Human Cancer cells for Wellness Convergence vol.13, pp.8, 2015, https://doi.org/10.14400/JDC.2015.13.8.543
  3. Understanding the sensory characteristics and drivers of liking for gochujang (Korean fermented chili pepper paste) vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0056-8
  4. Quality Characteristics and Antioxidant Activities of Cookies added with Gochujang vol.27, pp.2, 2017, https://doi.org/10.17495/easdl.2017.4.27.2.147
  5. Analysis of Quality State for Gochujang Produced by Regional Rural Families vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.1088
  6. Comparison of Physicochemical Characteristics and Antioxidant Activities in Commercial Gochujang Products vol.27, pp.3, 2018, https://doi.org/10.5934/kjhe.2018.27.3.223
  7. 브로콜리 꽃송이 및 줄기의 항산화, 항균 및 대장암 세포 생육억제효과 vol.42, pp.1, 2013, https://doi.org/10.4014/kjmb.1401.01003
  8. 고추장을 첨가한 쿠키의 품질 특성 및 항산화성 vol.27, pp.2, 2013, https://doi.org/10.17495/easdl.2017.4.27.2.148
  9. Lactobacillus plantarum 첨가 고추장의 C57BL/6 마우스에서 대장염 예방 증진효과 vol.24, pp.8, 2013, https://doi.org/10.11002/kjfp.2017.24.8.1188
  10. 복숭아 품종별 페이스트를 이용한 고추장의 품질 특성 vol.25, pp.1, 2018, https://doi.org/10.11002/kjfp.2018.25.1.19
  11. 오미자박 압착액 분말을 첨가한 고추장의 항산화 효과 vol.31, pp.3, 2013, https://doi.org/10.9799/ksfan.2018.31.3.388
  12. NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과 vol.34, pp.6, 2013, https://doi.org/10.6116/kjh.2019.34.6.117
  13. 토마토 발효액을 이용한 고추장의 이화학적 및 기능적 특성 vol.52, pp.2, 2013, https://doi.org/10.9721/kjfst.2020.52.2.183