DOI QR코드

DOI QR Code

Hydrogen Storage Properties of Pure MgH2

  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Lee, Seong Ho (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Park, Hye Ryoung (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • Received : 2013.03.11
  • Accepted : 2013.04.18
  • Published : 2013.05.27

Abstract

The hydrogen storage properties of pure $MgH_2$ were studied and compared with those of pure Mg. At the first cycle, pure $MgH_2$ absorbed hydrogen very slowly at 573 K under 12 bar $H_2$. The activation of pure $MgH_2$ was completed after three hydriding-dehydriding cycles. At the $4^{th}$ cycle, the pure $MgH_2$ absorbed 1.55 wt% H for 5 min, 2.04 wt% H for 10 min, and 3.59 wt% H for 60 min, showing that the activated $MgH_2$ had a much higher initial hydriding rate and much larger $H_a$ (60 min), quantity of hydrogen absorbed for 60 min, than did activated pure Mg. The activated pure Mg, whose activation was completed after four hydriding-dehydriding cycles, absorbed 0.80 wt% H for 5 min, 1.25 wt% H for 10 min, and 2.34 wt% H for 60 min. The particle sizes of the $MgH_2$ were much smaller than those of the pure Mg before and after hydriding-dehydriding cycling. The pure Mg had larger hydrogen quantities absorbed at 573K under 12 bar $H_2$ for 60 min, $H_a$ (60 min), than did the pure $MgH_2$ from the number of cycles n = 1 to n = 3; however, the pure $MgH_2$ had larger $H_a$ (60 min) than did the pure Mg from n = 4 to n = 6.

Keywords

References

  1. M. Y. Song, Y. J. Kwak, B. S. Lee, H. R. Park and B. G. Kim, Korean J. Met. Mater., 49(12), 989 (2011).
  2. M. Y. Song, J. Mater. Sci., 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  3. D. Chen, Y. M. Wang, L. Chen, S. Liu, C. X. Ma, L. B. Wang, Acta Materialia, 52(2), 521 (2004). https://doi.org/10.1016/j.actamat.2003.09.037
  4. L. Matovic, S. Kurko, Z. Raskovic-Lovre, R. Vujasin, I. Milanovic, S. Milosevic, J. Grbovic Novakovic, Int. J. Hydrogen Energy, 37(8), 6727 (2012). https://doi.org/10.1016/j.ijhydene.2012.01.084
  5. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater., 49(4), 298 (2011).
  6. K. I. Kim and T. W. Hong, Korean J. Met. Mater., 49(3), 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  7. J. J. Reilly and R. H. Wiswall, Inorg. Chem., 6(12), 2220 (1967). https://doi.org/10.1021/ic50058a020
  8. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., 7(11), 2254 (1968). https://doi.org/10.1021/ic50069a016
  9. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10), 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  10. M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  11. H. C. Zhong, H. Wang, L. Z. Ouyang, M. Zhu, J. Alloy Compd., 509(11), 4268 (2011). https://doi.org/10.1016/j.jallcom.2010.11.072
  12. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, G. Chen, Int. J. Hydrogen Energy, 37(1), 984 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.082
  13. Z. Li, X. Liu, L. Jiang, S. Wang, Int. J. Hydrogen Energy, 32(12), 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  14. J. M. Boulet and N. Gerard, J. Less-Common Met., 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  15. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, V. Tsakiris, J. Alloys Compd., 488(1), 163 (2009). https://doi.org/10.1016/j.jallcom.2009.07.037
  16. Z. Li, X. Liu, Z. Huang, L. Jiang, S. Wang, Rare Metals, 25(6)(Supplement 1), (247) 2006. https://doi.org/10.1016/S1001-0521(07)60083-7
  17. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy, 36(1), 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  18. Y. H. Cho, S. Aminorroaya, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy, 36(8), 4984 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.090
  19. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Intermetallics, 18(2), 203 (2010). https://doi.org/10.1016/j.intermet.2009.07.012
  20. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull., 11, 1441(1976). https://doi.org/10.1016/0025-5408(76)90057-X
  21. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met., 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  22. J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy, 35(10), 4569 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.107
  23. J. Cermak, B. David, Int. J. Hydrogen Energy, 36(21), 13614 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.133
  24. M. Y. Song, S. H. Baek, J. -L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy, 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161