DOI QR코드

DOI QR Code

캠축의 구조 진동 응답 및 응력

Responses and Stresses of Structural Vibration of a Camshaft

  • 최명진 (경희대학교 공과대학 기계공학과, 산학협력기술연구원)
  • Choi, Myung-Jin (Department of Mechanical Engineering, College of Engineering, Industrial Liaison Research Institute Kyung Hee University)
  • 투고 : 2012.10.11
  • 심사 : 2013.02.06
  • 발행 : 2013.05.31

초록

캠축의 진동 응답을 구하기 위해 캠축을 불균형 다단계 로터 베어링계로 해석하였으며, 복잡한 형상과 하중조건을 고려하여 유한요소법을 사용하였다. 유한요소 방정식을 유도한 후에 Newmark 법을 사용하여 진동 응답을 구하였다. V-8 엔진 캠축의 회전 진동 응답을 구하여 측정치와 비교하였다. 캠축의 변동 응력을 구하고, 응력 집중 효과를 고려한 다음에 Goodmann 식에 근거하여 피로 해석을 수행하였다. 캠축의 회전 진동에서는 굽힘 효과가 지배적이며, 인접하는 베어링 간격에 가장 큰 영향을 받는다. 캠축에 가해지는 하중의 변화가 클 경우에는 하중의 변화에 상응하여 시간에 따라 변화하는 베어링 계수를 적용하여야 함을 알 수 있었다.

To get vibration responses, a camshaft is modelled as an unbalanced multiple rotor bearing system. Because of complex geometry and complicated load conditions, the finite element method is used. After the finite element equation of the system is constructed, Newmark's method is used to get the vibration responses. Whirl vibration responses of a V-8 engine camshaft are estimated and compared with measured responses. After the fluctuating stresses are obtained, fatigue analysis is performed based upon the modified Goodman's equation. Stress concentration effects are considered. In the whirl vibration of camshafts, the bending effect is dominant, and the bending deformation is dependent upon the span length between the adjacent bearing journals. For high speeds, the fluctuations of excitation forces are large, and it is known that nonlinear time varying bearing coefficients should be used for analysis.

키워드

참고문헌

  1. M. P. Koster, Vibrations of Cam Mechanisms, Philips Tech. Lib. (The Macmillan Press Lid., New York, 1974).
  2. M. P. Koster, "Effect of flexibility of driving shaft on dynamic behavior of a cam mechanism," ASME Paper No. 74-DET-48 and J. Eng. Ind. (1974).
  3. F. Y. Chen, "A survey of the state of the art of cam system dynamics," Mechanisms. and Machine Theor.12, 201-224 (1977). https://doi.org/10.1016/0094-114X(77)90020-9
  4. B. Grant and A. H. Soni, "Cam design survey," Desig. Tech. Trans. 96, 177-219 (1974).
  5. M. Chew, F. Freudenstein and R. W. Longman, "Application of optimal control theory to the synthesis of high-speed cam-follower systems," Part 1 and Part 2, ASME Paper no. 82-DET-100 and 82-DET-101 (1982).
  6. A. P. Pisano and F. Freudenstein, "An experimental and analytical investigation of the dynamic response of a high-speed cam-flower system," Part 1 and Part 2, Transac. ASME, J. Mechan., Trans. Auto. Desig. (1983).
  7. F. Freudenstein, M. Mayourian and E. R. Maki, "Energy efficient cam-follower systems," J. Mechan., Trans. Auto. Desig. (1983).
  8. J. Kim, T. Moon and D. Han, "Analysis of camshaft vibration characteristics with mixed lubrication" (In Korean), J. KSAE 10, 34-43 (2002).
  9. H. D. Nelson, "A finite rotating shaft element using timoshenko beam theory," ASME Paper no. 79-WA/DE-5 (1979).
  10. H. N. Ozguven and Z. L. Ozkan, "Whirl speeds and unbalance response of multibearing rotors using finite elements," ASME Paper no. 83-DET-89 (1983).
  11. M. Choi, "Determination of natural frequencies of an engine crankshaft using finite elements"(in Korean), J. Acoust. Soc. Kr. 18, 20-25 (1999).
  12. J. W. Lund, Rotor-Bearing Dynamic Design Technology Part III: Design Handbook for Fluid Film Bearings, (Mechanical Technology Inc., New York, 1965).
  13. J. S. Rao, Rotor Dynamics, (John Wiley & Sons, New Jersey, 1983).
  14. J. M. Vanse, Rotordynamics of Turbomachinery, (John Wiley & Sons, New Jersey, 1988)
  15. J. E. Shigley and L. D. Mitchell, Mechanical Engineering Design, (MaGraw-Hill Book Company, New York, 1983).
  16. D. Kim, Dynamics and Optimal Design of High Speed Automotive Valve Trains, (Ph.D Dissertation, North Carolina State Univ. 1990).