
 

 

Predicting the Performance of Forecasting 
Strategies for Naval Spare Parts Demand:  

A Machine Learning Approach 
 
 

Seongmin Moon* 
Integrated Logistics Support Technology Team, Defense Acquisition Program Administration 

 
(Received: May 27, 2012 / Revised: June 1, 2012 / Accepted: June 3, 2012) 

 

ABSTRACT 

Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally 
depends on demand features. This research guides the use of the alternative forecasting strategies according to demand 
features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial 
neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative 
performance of the alternative forecasting strategies for the South Korean navy’s spare parts demand which has non-
normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier 
scores and the sum of forecasting errors. 
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1.  INTRODUCTION 

All Military establishments experience spare parts 
supply problems caused by inaccurate forecasts of spare 
parts demand (Seon and U, 2009). In common with 
many militaries, the South Korean Navy is under im-
mense pressure to maintain adequate stocks of warship’s 
spare parts with budgetary limitations. This requires a 
careful choice of a forecasting strategy. However, fore-
casting demand for spare parts is difficult. This is be-
cause the spare parts demand exhibits non-normal char-
acteristics (Moon et al., 2012). Demand that has infre-
quent occurrences, low average volumes or highly vari-
able volumes is said to be non-normal (Boylan et al., 
2008). 

A hierarchical structure of time series comprises 
individual item-level time series and an aggregated 
group-level time series in which the items are members 
(Hyndman et al., 2007). A hierarchical forecasting strat-
egy (HF) derives forecasts at item level by prorating 

demand forecasts for the group in which the items are 
members; whereas a direct forecasting strategy (DF) 
simply generates a forecast using item-level time series. 
HF may be divided into two sub-strategies. Top-down 
forecasting (TDF) models a forecast at the top group 
level by using the top group-level time series, and then 
creates lower-level forecasts according to the item’s 
percentage contribution within the group. Combinatorial 
forecasting (CF) models forecasts at all levels by using 
all levels of the time series, and then creates lower-level 
forecasts based on a combination of the forecasts.  

When an item-level time series is highly variable 
and intermittent, a higher group-level time series is usu-
ally less variable and less intermittent (Widiarta et al., 
2009). The lower level of variability and intermittency 
of a group-level time series can produce a more reliable 
item-level time series forecast by using HF (Fliedner 
and Lawrence, 1995). 

In practice, the relative performance of the alterna-
tive forecasting strategies varied (Moon et al., 2012). 
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Several studies (Dekker et al., 2004; Hyndman et al., 
2007; Kahn, 1998) reported that CF was more accurate 
than TDF and DF. It is important in practice to identify 
which of the different forecasting strategies is superior 
(Fildes et al., 2008). 

Many authors (Chen and Boylan, 2009; Schwarz-
kopf et al., 1988) have found that the relative perform-
ance of HF and DF is conditional on demand features. In 
order to guide the selection of a forecasting strategy by 
multivariate demand features, Moon et al. (2012b) de-
veloped a logistic regression (LR) classification model 
for predicting the performance of alternative forecasting 
strategies for the naval spare parts demand, and demon-
strated that this model reduced forecasting errors and 
inventory costs. 

Recent developments in the field of machine learn-
ing have led to a renewed interest in this classification 
problem. Given the various machine learning models 
such as artificial neural networks (ANN), decision trees 
(DT), boosted trees (BT) (Freund and Schapire, 1999) 
and random forests (RF) (Breiman, 2001), a question 
has been raised about which of the different models is 
suitable for the classification problem of this research. 
The features of data and the purposes of modeling could 
be criteria for the choice of a classification model, as 
claimed by Tu (1996). 

The objectives of this research are: (i) to compare 
the characteristics of the five classification models for 
predicting the performance of alternative forecasting 
strategies in forecasting the demand for the naval spare 

parts; and (ii) to evaluate the performance of the classi-
fication models in terms of classification accuracy and 
inventory costs. 

The remainder of this paper is organized as follows. 
Section 2 reviews the theoretical framework for the rela-
tionships between the forecasting strategies and demand 
features and the characteristics of the machine learning 
models. Section 3 describes the features of the spare parts 
demand and the alternative forecasting strategies. Sec-
tion 4 develops the classification models. This is followed 
by classification results and analysis in Section 5. Fi-
nally, Section 6 presents the conclusions. 

2.  DEMAND FEATURES AND 
CLASSIFICATION 

This section summarizes research that has investi-
gated the impact of demand features on the relative per-
formance of HF and DF, and describes the characteris-
tics of the machine learning models 

2.1 Demand Features 

Table 1 compares the results of seven major studies 
that identified demand features which significantly in-
fluenced the performance of the alternative forecasting 
strategies. 

Various demand features were found to have a sig-
nificant influence on the relative performance of HF and 

 
Table 1. The Influence of Demand Features on the Performance of Hierarchical Forecasting and Direct Forecasting 

(Moon, 2012) 

Demand feature Impact on relative performance Comparison Data Reference 

Analytic study Schwarzkopf et al. 
(1988)  ↓TDF 

Simulation Seasonal models Chen and Boylan 
(2009) 

↓DF Analytic study 
and Simulation AR(1) Widiarta et al. 

(2006)  

Correlation 

↓CF 
Variability in demand  

volume ↓CF 

Equipment group Gun/Radar: ↑CF 

Empirical study Warship’s spare 
parts 

Moon et al.  
(2012b)  

Substitutability (ψ) and 
variability of proportion (υ) 

↑ψ (&↑υ) or ↓υ: ↑TDF,  
↓ψ and ↑υ: ↑DF Simulation AR(1), MA(1) 

and ARMA(1, 1) 
Widiarta et al. 

(2008b)  

Forecasting horizon ↑TDF Analytic study Shlifer and Wolff 
(1979) 

Lag-1 auto correlation 
[ρ(1)] ρ(1) > 1/3: ↑DF Analytic study 

and Simulation AR(1) Widiarta et al.  
(2006) 

Grouping criteria Volume and dollar-volume: 
↑TDF Empirical study Automotive  

spare parts 
Fliedner and  

Mabert (1992) 
ψ = the portion of the unsatisfied demand for an item that is passed to another item within a group; ↓ (or ↑) = decreasing (or in-
creasing) the value of the demand feature increases the relative performance of the forecasting strategy; TDF = top-down fore-
casting; DF = direct forecasting; CF = combinatorial forecasting; dollar-volume = demand per period×item price. 
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DF. Correlation was a contentious feature as the effect 
across studies was inconsistent. Most studies compared 
TDF and DF and did not consider a combined influence 
of multivariate demand features on the performance, 
with the exception of the study by Moon et al. (2012b). 
The first classification model to predict the performance 
of CF and DF by the multivariate LR was suggested by 
Moon et al. (2012b). The demand features included in 
their model were the variability in demand volume (cap-
turing characteristics of non-normal demand), correla-
tion, and the equipment group. However, the classifica-
tion accuracy of the LR was unsatisfactory (55.6%). 

2.2 Classification Models 

The machine learning models, for instance ANN, 
DT, BT, and RF, can be alternatives to the LR model 
developed by Moon et al. (2012b). Table 2 summarizes 
the characteristics of these models in the literature. Each 
model has its own advantages and disadvantages. These 
machine learning models have better capabilities than 
LR for predicting the performance of forecasting strate-
gies for non-normal demand. ANN can detect more com-
plex nonlinear relationships between outcome and pre-
dictor variables than LR. This is because the predictor 
variables generally go through a nonlinear transforma-
tion at each hidden layer and output layer (Tu, 1996). 
With the tree diagram, DT is easily expressed as a set of 
rules, and is therefore termed a white-box model (Drei-

seitl and Ohno-Machado, 2002). As ensemble methods 
using DT, BT and RF were also considered. This is beca-
use BT (Freund and Schapire, 1999) and RF (Caruana and 
Niculescu-Mizil, 2006) were claimed to outperform DT. 

Despite the better capabilities of the above machine 
learning models, little attention has been paid to the in-
vestigation into machine learning models for such prob-
lems. This paper attempts to fill that research gap. 

3.  CASE STUDY  

This section summarizes the results of the previous 
research (Moon, 2012; Moon et al., 2012a; 2012b) on 
which this paper is based. The features of the demand 
for spare parts within the South Korean navy and the 
alternative forecasting strategies are described. 

3.1 The Characteristics of the Spare Parts Demand 

 The time series (2001. 2~2011. 7) for the spare parts 
demand obtained from the navy were aggregated into 
monthly time buckets. Table 3 reviews the features of 
the time series averaged over the 300 items. 

The demand features considered were: correlation 
(Widiarta et al., 2008a); the coefficient of variation in 
demand volume (Cv (vol)) expressed as the standard 
deviation of demand volume divided by mean demand 
volume; the number of periods with zero demand (Bauer 

 
Table 2. The Characteristics of the Machine Learning Models 

 Advantages Disadvantages Performance 

ANN 
- Ability to detect complex nonlin-

ear relationships among the vari-
ables 

- Susceptible to over-fitting 
- A black-box model 

- No significant difference between LR and 
ANN (Dreiseitl and Ohno-Machado, 2002)  

- Robust performance compared with LR, DT, 
BT, and RF (Caruana and Niculescu-Mizil, 
2006)  

DT 

- Easy to express as a set of rules 
(a white-box model) 

- Ability to detect the structure in 
data with hierarchical variables 

- Susceptible to over-fitting 
- Discontinuity of the outcome 

depending on the threshold built 
in the tree 

- High variance of outcome due 
to small perturbations of data 

- Superior to LR for large data (larger than 
10,000) (Perlich et al., 2003) 

BT 
- Resistance to over-fitting 
- Few parameters to tune 
- Ability to identify outliers 

- Susceptible to noise 
- A gray-box model 

- Reduces bias and variance compared to DT 
(Aliev and Aliev, 2007) 

- Better performance than DT (Freund and 
Schapire, 1999) 

- Poor performance with insufficient data or 
many outliers (Freund and Schapire, 1999) 

RF 

- Resistance to noise, outliers and 
over-fitting 

- Independence of each tree from 
the other trees when built 

- Low bias due to random predic-
tor selection 

- Few parameters to tune 

- A gray-box model 

- Better performance than DT (Caruana and Ni-
culescu-Mizil, 2006) 

- Good performance with large data and a large 
number of input variables (Williams, 2011)  

ANN = artificial neural networks; DT = decision trees; BT = boosted trees; RF = random forests. 
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and Kohavi, 1999); mean demand volume (Mean (vol)) 
(Fliedner and Lawrence, 1995); and forecasting horizon 
(Shlifer and Wolff, 1979). In order to standardize the 
measure in different periods of the time series, the pro-
portion of periods with zero demand (Pr (zero)), defined 
as the number of periods with zero demand divided by 
the total period, was used. As the forecasting horizon for 
the navy was calculated as a procurement lead time 
(PLT) plus the fixed review cycle (12 months), PLT was 
simply used as the statistic representing the forecasting 
horizon. 

There were significant correlation, high Cv (vol), 
high Pr (zero), low Mean (vol), and long PLT. This in-
dicated that the time series were correlated, were non-
normal, and required long forecasting horizons. Some 
relative demand features in the equipment groups were 
identified. For example, Gun/RD had higher intermit-
tency and shorter forecasting horizon than the others, as 
indicated by the higher Pr (zero) and the shorter PLT. 

 
Table 3. Statistical Features of the Time Series (Moon, 2012) 

 Total Gun/RD ME GE/AC
Correlation 0.77 0.81 0.76 0.79 

Cv (vol) 2.18 2.12 2.13 2.37 
Pr (zero) 0.49 0.61 0.46 0.50 

Mean (vol) 15.82 2.01 22.39 6.60 
PLT 9.47 9.20 9.57 9.34 

Gun/RD = Gun and Radar (44 items); ME = Main Engine (188 
items); GE/AC = Generator and Air Compressor (68 items). 

3.2 The Alternative Forecasting Strategies 

This paper employed the most robust direct fore-
casting (DF) and the most robust combinatorial forecast-
ing (CF) among the forecasting strategies tested by 
Moon et al. (2012a) as the alternative forecasting strate-
gies based on simple exponential smoothing for fore-
casting demand for the spare parts. The forecasts for 300 
items were generated in 2001. 5, 2001. 6 and 2001. 7 
(i.e. 900 forecasts), and were based on all the available 
previous records (from 2001. 2).  

In order to measure the practical impact of the pre-
diction accuracy on the navy’s inventory systems, a si-
mulation exercise was employed by Moon et al. (2012a). 
The simulated inventory system was a periodic review, 
order-up-to-level system. The total inventory costs were 
calculated as ‘unit variable cost×(0.2×mean inventory 
per month+0.4×mean stock-out per month).’ 

DF (the forecast with monthly aggregated data ad-
justed for linear trend and additive seasonality), which 
minimizes the mean absolute deviation (MAD) and root 
mean square error (RMSE) (whereas the forecasting 
method with monthly aggregated unadjusted data mini-
mizes inventory costs), is called the most robust direct 
forecast (RDF). SCF (the simple combination (Eq. (1)) 
between the group-level DF with quarterly aggregated 

data adjusted for linear trend and the item-level DF with 
monthly aggregated unadjusted data), which minimizes 
MAD, RMSE and inventory costs, is called the most 
robust simple combination forecast (RCF). 
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where: SCFi,t+τ = simple combination forecast of demand 

i, τ periods ahead, made at time t;  
 Ft+τ = group-level DF, τ periods ahead, made at 

time t;  
 fi,t+τ = item-level DF of demand i, τ periods ahead, 

made at time t. 
 
In this section, the features of the spare parts de-

mand and the alternative forecasting strategies were pre-
sented. These are used for implementing the classifica-
tion in the next section. 

4.  THE DEVELOPMENT OF THE 
CLASSIFICATION MODELS 

This section presents the procedure for building lo-
gistic regression (LR) used by Moon et al. (2012b) and 
artificial neural networks (ANN), decision trees (DT), 
boosted trees (BT), and random forecasts (RF). Other 
model such as support vector machines (SVM) (Caruana 
and Niculescu-Mizil, 2006) was also considered. How-
ever the error rate of SVM was higher than the error rate 
of the null model (classifying all the observations into 
the majority class (RCF)). As SVM in this case was not 
a sensible model, it was not included in this paper. 

4.1 Implementing variables 

As the dichotomous outcome variable within the 
classification models, the performance of each forecast 
for each item was measured by the absolute deviation 
divided by the item’s monthly mean consumption of 
data (AD/M) in order to eliminate scale dependencies of 
an item with large consumption, as shown in Eq. (2) 
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where: ,i ty = the observed demand for item i at time t;
 ,ˆi ty = the forecast demand for item i at time t; 
 ,i ty = the monthly mean demand for item i be-

tween t-k and t-1; 

 
3, 1 ( . . 05)
4, 2 ( . . 06)
5, 3 ( . . 07)

t i e
k t i e

t i e

=⎧
⎪= =⎨
⎪ =⎩

 



Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand 

Vol 19, No 1, May 2013, pp.1-10, © 2013 KORMS 5
  

 

RCF-RDF represents AD/M of RCF minus that of 
RDF. A positive value of RCF-RDF denotes that the 
RDF is superior to the RCF, and negative value indi-
cates that the RCF is superior. 

As predictors, five continuous variables and a cate-
gorical variable (Equipment representing the three cate-
gories of spare parts used for Gun/RD, ME, and GE/AC) 
as shown in Table 3 were examined within LR in terms 
of the log likelihood ratio test. AD/M of RCF and RDF 
at time t (as an outcome) and the corresponding demand 
features between t-k and t-1 (as predictors) were used 
for fitting the classification models. Cv (vol) and Equip-
ment were within the range of the general threshold for 
inclusion (P-value, 0.05). In order to examine the impact 
of the contentious demand feature Correlation (as shown 
in Table 1), the threshold was expanded to 0.10, as with 
the criterion used by Ottenbacher et al. (2001). Inconsis-
tent with the study of Shlifer and Wolff (1979) as shown 
in Table 1, PLT (representing the forecasting horizon) 
was non-significant. 

The distributions of Cv (vol) and Correlation had a 
number of outliers and were significantly skewed (0.90 
for Cv (vol); -1.46 for Correlation). When data deviate 
from a normal distribution, it is sensible to consider 
transforming the data (Miller, 1986). However, skewness 
is difficult to eliminate with a transformation (Chat-field, 
2004). The linear transformation using a quadratic, cu-
bic, log, or inverse function makes a case, which is close 
to being an outlier before transformation, an extreme case 
after transformation (Miles and Shevlin, 2001). Ro-bust 
estimators (e.g. trimming and winsorizing), which could 
convert outliers into proximity with the rest of the data, 
are based on the assumption that underlying distribution 
is symmetric about its median (Miller, 1986). Asymmet-
ric distribution such as Cv (vol) and Correlation could 
not be handled by the robust estimators. Therefore, trans-
formation was not conducted in the research. 

The scatter plots of the demand features compared 
with forecasting performance with the least-square line 

are presented in Figure 1. 
Although there are no strong relationships between 

Correlation (or Cv (vol)) and RCF-RDF, the least-square 
line suggests that RCF was superior; however, when Cor-
relation (or Cv (vol)) increased, the performance of RCF 
became moderate compared to that of RDF. 

Figure 2 presents a mosaic plot for Equipment by 
the number of the superior forecasting strategies in 
terms of Eq. (2). RCF was roughly three times better 
than RDF in the case of Gun/RD and it was therefore 
used as the reference group with its demand features in 
comparison to the other two groups. 
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4.2 Implementing the Classification Models 

For the purpose of comparison, the identical vari-
ables and data used for LR were entered into the ma-
chine learning models. LR was fitted with the 900 ob-
servations (forecasts), with the predictors (Correlation, 
Cv (vol) and Equipment) by using R Commander 1.5-5 
(Fox, 2012). Each machine learning model was imple-
mented using Rattle (Williams, 2009) embedded with 
several other R software packages used in constructing 
ANN, DT, BT, and RF. 

If AD/M for RCF was greater than that for RDF, 
the outcome was encoded as 0 (RDF); otherwise it was 
encoded as 1 (RCF). This classification result of the 
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Figure 1. Demand Features vs. Forecasting Performance (Moon et al., 2012b) 
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forecasting methods is called the observed classification. 
If the outcome was smaller than 0.5 it was classified as 
RDF; otherwise it was classified as RCF. 

In order to establish internal validity for a predic-
tive model, this paper tested 10 sets for the 10% cross-
validation. Many parameter settings for each model were 
tested and the settings which provided the best perform-
ance were used for generating results. 

4.2.1 Logistic Regression (LR) 

 The probability of RCF being superior to RDF (Pr 
(RCF)) can be defined in Eq. (3). 
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      (3) 

 
LR requires continuous predictors; however, it can 

include a categorical predictor by using dummy coding. 
The categorical variable, Equipment was encoded as two 
dummy variables (Equipment (ME), Equipment (GE/ 
AC)) with values of 00 for Gun/RD (as a reference cate-
gory), 10 for ME, and 01 for GE/AC respectively. 

4.2.2 Artificial Neural Networks (ANN) 

Feed-forward neural networks with a single hidden 
layer (Venables and Ripley, 2002) were built using Rat-
tle embedded with R software package nnet (Ripley, 
2012). Dreiseitl and Ohno-Machado (Dreiseitl and Ohno- 
Machado, 2002) pointed out that one layer of hidden 
neurons is generally sufficient for classifying most data 
sets. One of the disadvantages of ANN is over-fitting. 
Limiting the number of hidden nodes may prevent over-
fitting, whereas no theory exists for predetermining the 
optimal number of hidden nodes (Tu, 1996). After a se-
ries of examinations this paper selected the settings of 3 
hidden nodes. 

4.2.3 Decision Trees (DT) 

A classification and regression tree (CART) (Bre-
iman et al., 1984) was structured using R software pack-
age rpart (Thereau and Atkinson, 2012). An information 
gain measure was employed for deciding between alter-
native splits. In order to avoid over-fitting, several op-
tions are available. The maximum depth of a tree, 3, and 
complexity parameter, 0.01, were chosen. 

4.2.4 Boosted Trees (BT) 

Adaptive Boosting (AdaBoost) was built using R 
software package ada (Culp et al., 2012), following the 
algorithms listed in Friedman et al. (2000). The individ-
ual decision trees within AdaBoost were built using 
rpart. AdaBoost has a parameters to tune (i.e. the num-
ber of iterations to boost) (Freund and Schapire, 1999). 
An examination of the error rates suggested that there 
was very little reduction gained by adding more than 50 
trees. This led to the choice of 50 iterations. 

4.2.5 Random Forests (RF) 

A random forest algorithm (Breiman, 2001) was 
implemented using R software package random Forest 
(Liaw and Wiener, 2002). RF has only two parameters 
(the number of trees in the forest and the number of 
variables at each node) (Liaw and Wiener, 2002). An 
examination of the error rates suggested that there was 
very little change achieved by adding more than 1,000 
trees to the forest. This resulted in 1,000 as the number 
of trees. The output of RF depends primarily on the 
number of variables to be chosen randomly at each tree 
node (Prasad et al., 2006). The general default value is 
one-third the number of variables (Prasad et al., 2006) 
or the square root of the total number of variables avail-
able for classification tasks (Williams, 2011). Liaw and 
Wiener (2002) stipulated that one variable can give a 
very good performance for some data. Based on these 
recommendations, the number of variables (to be chosen 
randomly at each node) for this research was selected to 
be one. 

5.  CLASSIFICATION RESULTS AND 
ANALYSIS 

This section analyses the results of the five classifi-
cation models and evaluates the performance of the 
models. 

5.1 The Interpretation of the Results 

There was no significant difference in the estimated 
coefficients for LR across the 10 cross-validation train-
ing sets and overall data set. Table 4 presents the predic-
tors in LR built with the overall data. The significance 
of the predictors was estimated using a z-statistic (de-
fined as the estimated coefficient divided by the stan-
dard error). 

 
Table 4. Predictors in the Logistic Regression 

(Moon et al., 2012b) 

Predictor β Std error z P-value eβ 
Correlation -.366 .266 -1.38 1.68-e01 .694

Cv (vol) -.367 .109 -3.37 7.43-e04 .693
Equipment (ME) -.702 .206 -3.41 6.41e-04 .496

Equipment 
(GE/AC) -.560 .236 -2.37 1.76-e02 .571

Intercept 1.792 .346 5.18 2.27e-07  
β = the estimated regression coefficient. 

 
Cv (vol) had the most significant effect on the rela-

tive performance of alternative forecasting methods, 
followed by Equipment. Correlation had a marginal ef-
fect on the performance. 

The odds ratio (defined as eβ) indicates that, when 
Correlation or Cv (vol) increased with other predictors 
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held constant, the log odds of the probability of RCF 
being superior decreased. This is consistent with the 
effects of Correlation and Cv (vol) as shown in Figure 1. 

The effect of Correlation is consistent with the re-
sults of Schwarzkopf et al. (1988) and Chen and Boylan  
(2007), as shown in Table 1, if CF is considered to be a 
variant of TDF. 

 With regard to Equipment, RCF for ME is 0.496 
times as likely as RCF for Gun/RD to be superior to 
RDF, and RCF for GE/AC is 0.571 times as likely as 
RCF for Gun/RD to be superior to RDF. 

 As Cv (vol), Equipment, and Correlation were pre-
sented respectively in all sets, nine sets, and two sets of 
the 10 cross-validation training sets for DT, Cv (vol) 
was the most important variable, followed by Equip-
ment. With the overall data, three rules were generated, 
as shown in Table 5.  

 
Table 5. Decision Trees Rules Built with Overall 

Observations 

# Rules 

1 If (Cv (vol) ≥ 2.065) and (Equipment = Gun/RD), then 
RSF is superior. 

2 If (Cv (vol) < 2.065), then RSF is superior. 

3 If (Cv (vol) ≥ 2.065) and (Equipment = GE/AC or 
ME), then RDF is superior. 

 
 Rule1 indicates a 65% chance of RCF being supe-

rior and covers 6% (54) of the data set; Rule2 denotes a 
60% chance of RCF being superior and covers 53% 
(474) of the data set; Rule3 represents a 55% chance of 
RDF being superior and covers 41% (372) of the data 
set. Rule1 is consistent with the results of LR in that 
RCF performed better for Gun/RD. Rule2 also corrobo-
rated the results of LR in that low Cv (vol) is a favorable 
condition for RCF.  
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Figure 3. Variable Importance Plot for AdaBoost 
 
 There was no significant difference in the rank of 

the predictors for AdaBoost across the 10 cross-valida-
tion training sets and overall data set, as Cv (vol) was 
used in the greatest number of iterations, followed by 
Correlation and Equipment. Cv (vol), Correlation, and 
Equipment were employed in 49, 41, and 35 iterations 
respectively, out of 50 iterations using the overall data 

set. The variable importance was calculated as the aver-
age improvement in accuracy for the variable selected to 
split the data over all trees in the ensemble. Figure 3 
presents the variable importance plot for AdaBoost us-
ing the overall data set. 

 It was interesting that Correlation (which was the 
least significant variable in other models) was highest 
ranked for AdaBoost. 

No significant difference was identified in the rank 
of the predictors for RF across the 10 cross-validation 
training sets and overall data set. The mean decrease 
accuracy is calculated as a scaled average of the predic-
tion accuracy of each variable. The mean decrease Gini 
indicates the total decrease of the impurity in a DT node 
when splitting on a variable using the Gini index. A 
higher value of these measures indicates that the vari-
able is more important. The variable importance plots 
for RF built with the overall data are presented in Figure 
4. Both measures identified Cv(vol) as the most impor-
tant predictor, with the other two predictors following in 
different orders. 

 

Correlation

Equipment

Cv (vol)

0.0 0.4 0.8
MeanDecreaseAccuracy

Equipment

Correlation

Cv (vol)

0 10 20 30
MeanDecreaseGini  

Figure 4. Variable Importance Plots for RF 
 
The impact of the variables in LR, DT and RF (in 

terms of z-statistics of β as shown in Table 4, the num-
ber of employments in the 10 cross-validation sets, and 
the mean decrease accuracy as shown in Figure 4 re-
spectively) was consistent. The most important variable 
was Cv (vol) followed by Equipment and Correlation. 
AdaBoost focused on the most difficult variable (albeit 
the least significant variable in other models) and pro-
duced the highest score. This might lead to the inconsis-
tent result in AdaBoost that Correlation took the highest 
rank in terms of the variable importance (as shown in 
Figure 3). 

5.2 The Performance of the Classification Models 

Table 6 compares the prediction results of the mo-
dels in the 10 cross-validation test sets. ‘Predicted’ indi-
cates these prediction results; ‘observed’ indicates the 
classification results from the observed classification. 
All the models produced marginally smaller error rates 
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than the null model classifying all the observations into 
the majority class (RCF). ANN minimized the classifi-
cation errors, followed by LR. 

 
Table 6. Error Matrix for the Models 

Predicted 
 Observed 

RDF RSF 
Error (%)

RDF 0 414 100 
RSF 0 486 0 RSF 

Overall   46.0 
RDF 164 250 60.4 
RSF 150 336 30.9 LR 

Overall   44.4 
RDF 166 248 59.9 
RSF 130 350 26.7 ANN 

Overall   42.0 
RDF 167 247 59.7 
RSF 156 330 32.1 DT 

Overall   44.8 
RDF 143 271 65.5 
RSF 138 348 28.4 BT 

Overall   45.4 
RDF 119 295 71.3 
RSF 113 373 23.3 RF 

Overall   45.3 
 
Table 7 compares the performance of the models in 

terms of the sum of forecasting errors (calculated by Eq. 
(2)), the Brier score (Wilks, 2011), and the inventory 
costs (Moon et al., 2012) in the 10 cross-validation test 
sets. 

 
Table 7. Performance of the Models 

 Sum of errors Brier Inventory costs 
RSF 7,155  $597,572 
LR 7,062 0.2435 $584,195 

ANN 7,084 0.2475 $571,920 
DT 7,209 0.2499 $617,824 
BT 7,284 0.2497 $618,264 
RF 7,268 0.2835 $616,261 
 
The Brier score of a sensible model ranges from 0 

(perfect) to 0.25 (Steyerberg et al., 2001). The sum of 
errors and the inventory costs that are smaller than the 
null model and the sensible Brier scores are shown in 
bold. 

LR minimized the sum of forecasting errors and the 
Brier score, whereas ANN minimized the inventory costs. 
All models except RF were within the range of a sensi-
ble model in terms of the Brier score. ANN and LR 
were superior to the null model in terms of all the meas-
ures. These results are consistent with the argument of 

authors (Caruana and Niculescu-Mizil, 2006) that ANN 
was robust, and the claim of researchers (Dreiseitl and 
Ohno-Machado, 2002) that the performances of ANN 
and LR were similar. On the basis of these results, it 
might be claimed that the internal validity of LR and 
ANN has been established. The performance of ANN 
and LR was marginally higher than the null model. This 
might be because the low reliability of data (due to the 
recent stabilization of the naval logistical data base) 
introduced extremely non-normal characteristics. 

As shown in Table 2, DT performed worse than LR 
with small amounts of data (e.g. smaller than 10,000 ob-
servations) (Perlich et al., 2003); BT performed poorly 
with insufficient data and many outliers (Freund and 
Schapire, 1999) and was susceptible to noise (Aliev and 
Aliev, 2007); RF is generally suitable for large data and 
a large number of input variables (Williams, 2011). The 
unsatisfactory performance of DT, BT, and RF could be 
explained by the outliers and noise originating from the 
low reliability of data, the small size of the data sets (i.e. 
900), or the small number of input variables (i.e. 3). 

In general, ANN or LR might be the recommended 
choice for the problem facing this research. However, 
when the inventory manager wants to understand the 
causal relationships between the performance of fore-
casting strategies and the demand features, LR can pro-
vide a clear advantage due to the black-box characteris-
tics of ANN (Tu, 1996). If the primary goal is the inter-
pretation of the results, DT still remains one of the 
choices for that problem. 

6.  CONCLUSIONS 

This paper compared the five classification models 
for predicting the performance of the alternative fore-
casting strategies (most robust simple combination fore-
cast and most robust direct forecast) for forecasting non-
normal demand associated with spare parts demand in 
the South Korean navy. The five classification models 
were constructed using logistic regression (LR), artifi-
cial neural networks (ANN), decision trees (DT), boos-
ted trees (BT), and random forests (RF), with three pre-
dictors (Correlation, variability in demand volume (Cv 
(vol)), and Equipment). 

 The most important predictor in LR (in terms of z-
statistics of β), DT (in terms of the number of employ-
ments in the 10 cross-validation sets) and RF (in terms 
of the mean decrease accuracy) was Cv (vol), followed 
by Equipment and Correlation. The feature of BT that 
concentrates on the most difficult variable might be the 
reason that Correlation took the highest rank in terms of 
the variable importance for BT. Consistent impacts of 
Cv (vol) and Equipment in LR and DT were identified. 
When Cv (vol) within LR increased, the log odds of the 
probability of RCF being superior decreased. This was 
presented as a rule by DT; that is, if Cv (vol) is less than 
2.065, then RCF is superior. LR identified that RCF 
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performed better for Gun/RD, and DT also generated a 
rule including this effect. 

The performance of the five models was evaluated 
by several measures. In terms of the error matrix (as 
shown in Table 6), all the five models performed better 
than the null model, and the best model was ANN, fol-
lowed by LR. All models except RF were sensible in 
terms of the Brier score. Only ANN and LR were supe-
rior to the null model in terms of all the measures such 
as the sum of forecasting errors, the Brier score, and the 
inventory costs, as shown in Table 7. LR minimized the 
sum of forecasting errors and the Brier score; ANN 
minimized the classification errors and the inventory 
costs. These points lead to the conclusion that the reli-
ability and internal validity of ANN and RF have been 
established. 

The eventual purpose of the classification model 
was to minimize the inventory costs through guiding the 
use of the alternative forecasting strategies. Therefore 
ANN might be the best choice for the inventory manager. 

Although ANN performed nicely, it is difficult to 
interpret the weights. Sometimes the primary goal of the 
inventory manager might be an interpretation of the re-
sults. In this case, LR (or even DT) can be recommended. 

This paper identified the characteristics of the five 
classification models in order to predict the performance 
of the alternative strategies for forecasting the spare 
parts demand and to evaluate the performance of the 
classification models in terms of classification accuracy 
and inventory costs. Therefore the research gap might be 
claimed to be filled. 

The performance of ANN and LR was found to be 
marginally superior to the null model. This may be 
caused by the low reliability of data obtained from the 
unsettled database. The low reliability of data might lead 
to the poor performance of BT. As DT, BT, and RF are 
generally used with sufficient data (as shown in Table 2), 
the data set for this research with only 900 items might 
be an unfavorable setting for these models. Further in-
vestigation into the performance of the classification 
with more reliable and/or larger datasets is strongly rec-
ommended.  
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