DOI QR코드

DOI QR Code

Recent Advances in the Piezo-Phototronic Effect for Optoelectronics

광전자소자를 위한 Piezo-Phototronic 효과의 연구 동향

  • Shin, Kyung-Sik (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kim, Seongsu (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kim, Dohwan (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Yoon, Gyu Cheol (School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU)) ;
  • Kim, Sang-Woo (SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU))
  • 신경식 (성균관대학교 신소재공학부) ;
  • 김성수 (성균관대학교 신소재공학부) ;
  • 김도환 (성균관대학교 신소재공학부) ;
  • 윤규철 (성균관대학교 신소재공학부) ;
  • 김상우 (성균관대학교 나노과학기술협동학부)
  • Received : 2013.05.28
  • Accepted : 2013.05.29
  • Published : 2013.05.31

Abstract

Wurtzite nanomaterials, such as ZnO, GaN, and InN, have become a subject of great scientific and technological interest as they simultaneously have piezoelectric and semiconductor properties. In particular, the piezoelectric potential (piezopotential) created by dynamic straining in the nanowires drives a transient flow of current in the external load, converting mechanical energy into electricity. Further, the piezopotential can be used to control the carrier generation, transport, separation, and/or recombination at the metal-semiconductor junction or p-n junction, which is called the piezophototronic effect. This paper reviews the recent advances on the piezophototronic effect to better use the piezophototronic effect to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detectors, solar cells and LEDs. This paper also discusses several research and design studies that have improved the output performance of optoelectronic devices.

Keywords

References

  1. Z. L Wang, "Progress in Piezotronics and Piezo-Phototronics," Adv. Mater., 24 4632-46 (2012). https://doi.org/10.1002/adma.201104365
  2. Z. L. Wang, "Piezotronics and Piezo-Phototronics," pp. 127-52, in Microtech. MEMS, Springer, 2012.
  3. Z. L. Wang, "Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-phototronics," Nano Today, 5 [6] 540-52 (2010). https://doi.org/10.1016/j.nantod.2010.10.008
  4. B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, "Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators," ACS Nano, 5 [5] 4197-04 (2011). https://doi.org/10.1021/nn200942s
  5. J. H. Choi, J.-S. Seo, S. N. Cha, H. J. Kim, S. M. Kim, Y. J. Park, S.-W. Kim, J.-B. Yoo, and J. M. Kim, "Effects of Flow Transport of the Ar Carrier on the Synthesis of ZnO Nanowires by Chemical Vapor Deposition," Jpn. J. Appl. Phys., 50 [1] 015001-15609 (2011). https://doi.org/10.1143/JJAP.50.015001
  6. M.-Y. Choi, D. Choi, M.-J. Jin, I. Kim, S.-H. Kim, J.-Y. Choi, S. Y. Lee, J. M. Kim, and S.-W. Kim, "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods," Adv. Mater., 21 2185-89 (2009). https://doi.org/10.1002/adma.200803605
  7. D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee, S.-W. Kim, J.-Y. Choi, S. Y. Lee, and J. M. Kim, "Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes," Adv. Mater., 22 2187-92 (2010). https://doi.org/10.1002/adma.200903815
  8. Y. Hu, Y. Zhang, Y. Chang, R. L. Snyder, Z. L. Wang, "Optimizing the Power Output of a ZnO Photocell by Piezopotential," ACS Nano, 4 4220-24 (2010). https://doi.org/10.1021/nn1010045
  9. Y. Zhang, Y. Yang, and Z. L. Wang, "Piezo-Phototronics Effect on Nano/Microwire Solar Cells," Energy Environ. Sci., 5 6850-56 (2012). https://doi.org/10.1039/c2ee00057a
  10. F. Boxberg, N. Sondergaard, and H. Q. Xu, "Photovoltaics with Piezoelectric CoreShell Nanowires," Nano Lett., 10 1108-12 (2010). https://doi.org/10.1021/nl9040934
  11. D. H. Choi, K. Y. Lee, M. -J. Jin, S. -G. Ihn, S. Y. Yun, X. Bulliard, W. Choi, S. Y. Lee, S. -W. Kim, J. -Y. Choi, J. M. Kim, and Z. L. Wang,, "Control of Naturally Coupled Piezoelectric and Photovoltaic Properties for Multi-type Energy Scavengers," Energy Environ. Sci., 4 4607-13 (2011). https://doi.org/10.1039/c1ee02080c
  12. C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z. L. Wang, "Enhanced $Cu_2S/CdS$ Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect," Nano Lett., 12 3302-07 (2012). https://doi.org/10.1021/nl3014082
  13. J. Y. Tang, Z. Y. Huo, S. Brittman, H. W. Gao, and P. D. Yang, "Solution-Processed Core-Shell Nanowires for Efficient Photovoltaic Cells," Nat. Nanotechnol., 6 [9] 568-72 (2011). https://doi.org/10.1038/nnano.2011.139
  14. C. F. Pan, W. X. Guo, L. Dong, G. Zhu, and Z. L. Wang, "Optical Fiber-Based Core-Shell Coaxially Structured Hybrid Cells for Self-Powered Nanosystems," Adv. Mater., 24 3356-61 (2012). https://doi.org/10.1002/adma.201201315
  15. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the Extraction Efficiency of GaN-Based Light Emitting Diodes via Surface Roughening," Appl. Phys. Lett., 84 855-57 (2004). https://doi.org/10.1063/1.1645992
  16. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-Nitride Blue and Ultraviolet Photonic Crystal Light Emitting Diodes," Appl. Phys. Lett., 84 466-68 (2004). https://doi.org/10.1063/1.1644050
  17. Y. Zhang and Z. L. Wang, "Theory of Piezo-Phototronics for Light-Emitting Diodes," Adv. Mater., 24 4712-18 (2012). https://doi.org/10.1002/adma.201104263
  18. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, "Polarization-Induced Hole Doping in Wide-Band-Gap Uniaxial Semiconductor Heterostructures," Science, 327 60-64 (2010). https://doi.org/10.1126/science.1183226
  19. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, and S.-J. Park, "UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High Temperature RF-Sputtering," Adv. Mater., 18 2720-24 (2006). https://doi.org/10.1002/adma.200502633
  20. Q. Yang, W. W, S. Xu, and Z. L. Wang, "Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect," Nano. Lett., 11 4012-17 (2011). https://doi.org/10.1021/nl202619d
  21. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, "Piezo-Phototronic Effect Enhanced Visible and Ultraviolet Photodetection Using a ZnO-CdS CoreShell Micro/nanowire," ACS Nano, 7 4537-44 (2013). https://doi.org/10.1021/nn401232k
  22. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect," ACS Nano, 4 6285-91 (2010). https://doi.org/10.1021/nn1022878
  23. Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, "Nanowire Piezo-phototronic Photodetector: Theory and Experimental Design," Adv. Mater., 24 1410-17 (2012). https://doi.org/10.1002/adma.201104333
  24. F. Zhang, S. Niu, W. Guo, G. Zhu, Y. Liu, X. Zhang, and Z. L. Wang, "Piezo-Phototronic Effect Enhanced Visible/UV Photodetector of a Carbon-Fiber/ZnO-CdS Double-Shell Microwire," ACS Nano, 7 4537-44 (2013). https://doi.org/10.1021/nn401232k

Cited by

  1. Electrical transport property of ZnO thin films at high H2 pressures up to 20 bar vol.69, pp.3, 2016, https://doi.org/10.3938/jkps.69.277