DOI QR코드

DOI QR Code

Effect of WO3 or Ga2O3 Addition on the Phase Evolution and Properties of Y2O3-Doped AlN Ceramics

Y2O3-AlN 세라믹스의 생성상 및 물성에 미치는 WO3 및 Ga2O3의 첨가효과

  • Shin, Hyunho (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Hwang, Injoon (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • 신현호 (강릉원주대학교 세라믹신소재공학과) ;
  • 윤상옥 (강릉원주대학교 세라믹신소재공학과) ;
  • 김신 (강릉원주대학교 세라믹신소재공학과) ;
  • 황인준 (강릉원주대학교 세라믹신소재공학과)
  • Received : 2013.03.15
  • Accepted : 2013.05.07
  • Published : 2013.05.31

Abstract

The effect of a $WO_3$ or $Ga_2O_3$ addition on the densification, phase evolution, optical reflectance, and elastic and dielectric properties of $Y_2O_3$-doped AlN ceramics sintered at $1800^{\circ}C$ for 3 h is investigated. The investigated compositions of the additives are 4.5 wt% $Y_2O_3$ (YA), 3.5 wt% $Y_2O_3$-1.0 wt% $Ga_2O_3$ (YGA), and 3.5 wt% $Y_2O_3$-1.0 wt% $WO_3$ (YWA). $YAlO_3$ and $Y_4Al_2O_9$ form as the secondary phases in all of the investigated compositions, whereas $W_2B$ appears additionally in the YWA. In the YGA, Ga is detected in the AlN grains, indicating that the dissolution of $Ga_2O_3$ into the AlN lattice occurs. The addition of $WO_3$ blackens the specimen more significantly than that of $Ga_2O_3$ does. In all of the investigated specimens, the linear shrinkage and the apparent density are above 20 percent and in the range of 3.34-3.37 $g/cm^3$, respectively. The elastic modulus, Poisson's ratio, the dielectric constant, and the dielectric loss are in the ranges of 335-368 GPa, 0.146-0.237, 8.60-8.63, $2.65-3.95{\times}10^{-3}$, respectively. The sinterability and the properties of $Y_2O_3$-doped AlN ceramics are not much altered by the addition of $WO_3$ or $Ga_2O_3$.

Keywords

References

  1. F. Ueno, "AlN Sintered Polycrystal," pp. 691-714, Electric Refractory Materials., Ed. by Y. Kumashiro, Marcel Dekker, Inc., New York, 2000.
  2. K. Komeya, H. Inoue, and A. Tsuge, "Effect of Various Additives on Sintering of Aluminum Nitride," Yogyo-Kyokai-Shi, 89 [6] 330-36 (1981). https://doi.org/10.2109/jcersj1950.89.1030_330
  3. M. Kasori, F. Ueno, and A. Tsuge, "Effects of Transition- Metal Additions on the Properties of AlN," J. Am. Ceram. Soc., 77 [8] 1991-2000 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07089.x
  4. Y. Nagai and G. Lai, "Synthesis and Characterization of Shaded Aluminum Nitride with the Addition of Transition Metal Oxides," J. Ceram. Soc. Jpn., 106 [1] 12-16 (1998). https://doi.org/10.2109/jcersj.106.12
  5. Powder Diffraction File 25-0990, International Center for Diffraction Data (ICDD).
  6. H. Makihara, K. Omote, N. Kamehara, and M. Tsukada, "Process of Producing Aluminum Nitride Multiple-Layer Circuit," U.S. Pat. NO: 5,683,529 (Nov. 4, 1997).
  7. K. Kuribayashi, M. Yoshimura T. Ohta, and T. Sata, "High-Temperature Phase Relations in the System $Y_2O_3-Y_2O_3{\cdot}WO_3$," J. Am. Ceram. Soc., 63 [11-12] 640-43 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb09852.x
  8. J. L. Waring, "Phase Equilibria in the System Aluminum Oxide-Tungsten Oxide," J. Am. Ceram. Soc., 48 [9] 493 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14809.x
  9. V. F. Popova, A. G. Petrosyan, E. A. Tugova, D. P. Romanov, and V. V. Gusarov, "$Y_2O_3-Ga_2O_3$ Phase Diagram," Russ. J. Inorg. Chem., 54 [4] 624-29 (2009). https://doi.org/10.1134/S0036023609040202
  10. R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr., A32 751-67 (1976).
  11. K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, "Low-Temperature Sintering and High Thermal Conductivity of $YLiO_2-Doped$ AlN Ceramics," J. Am. Ceram. Soc., 79 [7] 1979-81 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08024.x
  12. K. Watari, "High Thermal Conductivity Non-Oxide Ceramics," J. Ceram. Soc. Jpn., 109 [1] S7-S16 (2001). https://doi.org/10.2109/jcersj.109.S7
  13. I. Barin, "Thermochemical Data of Pure Substances," pp. 42-1660 VCH, Weinheim, Federal Republic Germany, 1989.
  14. Powder Diffraction File 33-0041, International Center for Diffraction Data (ICDD).
  15. Powder Diffraction File 34-0368, International Center for Diffraction Data (ICDD).
  16. I. Yonenaga, T. Shima, and H. F. Sluiter, "Nano-Indentation Hardness and Elastic Moduli of Bulk Single-Crystal AlN," Jpn. J. Appl. Phys., 41 [7A] 4620-21 (2002). https://doi.org/10.1143/JJAP.41.4620
  17. D. Gerlich, S. L. Dole, and G. A. Slack, "Elastic Properties of Aluminum Nitride," J. Phys. Chem. Soc., 47 437-41 (1986). https://doi.org/10.1016/0022-3697(86)90039-9
  18. P. Boch, J. C. Glandus, J. Jarrige, J. P. Lecompte, and J. Mexmain, "Sintering, Oxidation and Mechanical Properties of Hot Pressed Alumnium Nitride," Ceram. Int., 8 [1] 34-40 (1982). https://doi.org/10.1016/0272-8842(82)90013-X
  19. E. Savrun and V. Nguyen, "High Thermal Conductivity Aluminum Nitride for High Power Microwave Windows-An Update," pp. 35 in 7th IEEE International Vacuum Electronics Conference, Ed. by B. Fickett, IEEE, California, 2006.