DOI QR코드

DOI QR Code

Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure

초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Eom, Junghye (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 엄정혜 (서울시립대학교 신소재공학과) ;
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2013.05.14
  • Accepted : 2013.05.22
  • Published : 2013.05.31

Abstract

We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

Keywords

References

  1. K. D. Kim, Y. D. Kim, and S. W. Kim, "Synthesis of Micromesoporous Magnesium Oxide Cubes with Nanograin Structures in a Supercritical Carbon Dioxide/Ethanol Solution," J. Nanosci. Nanotechnol., 11 [7] 5823-28 (2011). https://doi.org/10.1166/jnn.2011.4400
  2. R. W. Davidge, "Mechanical Behaviour of Ceramics," pp. 71-92, Cambridge University Press, Cambridge (1980).
  3. A. Kamitani, H. Wakana, S. Adachi, Y. Nakajima, K. Higuchi, H. Yamamoto, and K. Tanabe, "Examination of MgO Insulator Thin Films for High-Tc Superconducting Devices," Physica C, 426-431 [2] 1502-07 (2005). https://doi.org/10.1016/j.physc.2005.02.117
  4. T. H. Choi and B. S. Jun, "Wear Mechanism of MgO-C Refractory with Thermite Reaction Products of MgO and Al," J. Kor. Ceram. Soc., 33 [7] 832-38 (1996).
  5. D. Chen, E. H. Jordan, and M. Gell, "Pressureless Sintering of Translucent MgO Ceramics," Scr. Mater., 29 757-59 (2008).
  6. Y. Fang, D. Agrawal, G. Skandan, and M. Jaing, "Fabrication of Translucent MgO Ceramics Using Nanopowders," Mater. Lett., 58 551-54 (2004). https://doi.org/10.1016/S0167-577X(03)00560-3
  7. Y. B. Lee, H. C. Park, and Ki-Dong Oh, "Influence of $TiO_2$ on Sintering and Microstructure of Magnesia," J. Kor. Ceram. Soc., 31 [5] 471-76 (1994).
  8. K. Itatani, T. Tsuijimoto, and A. Kishimoto, "Thermal and Optical Properties of Transparent Magnesium Oxide Ceramics Fabricated by Hot-Isostatic Pressing," J. Eur. Ceram. Soc., 26 639-45 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.011
  9. T. B. Tran, S. Hayun, A. Navrotsky, and R. H. R. Castro, "Transparent Nanocrystalline Nure and Ca-Doped MgO by Spark Plasma Sintering of Anhydrous Nanoparticles," J. Am. Ceram. Soc., 95 [4] 1185-88 (2012). https://doi.org/10.1111/j.1551-2916.2012.05103.x
  10. M. Toshihiko, M. Yusuke, Y. Yoshituki, T. Satoshi, and I. Takayasu, "Effect of Silica and Boron Oxide on Transparency of Magnesia Ceramics," J. Ceram. Soc. Jpn., 107 [1244] 343-48 (1999). https://doi.org/10.2109/jcersj.107.343
  11. J. Song, Y. Noh, and O. Song, "Property of MgO with Different Sintering Temperatures under High Pressures," J. Kor. Ceram. Soc., 49 [6] 608-13 (2012). https://doi.org/10.4191/kcers.2012.49.6.608
  12. S. Zhang, N. J. Marriott, and W. E. Lee, "Thermochemistry and Microstructures of MgO-C Refractories Containing Various Antioxidants," J. Eur. Ceram. Soc., 21 1037-47 (2001). https://doi.org/10.1016/S0955-2219(00)00308-3
  13. Y. J. Park, N. M. Hwang, and D. Y. Yoon, "Abnormal Growth of Faceted (WC) Grains in a (Co) Liquid Matrix," Metall. Mater. Trans. A, 27 [9] 2809-19 (1996). https://doi.org/10.1007/BF02652373
  14. Y. W. Kim, J. Y. Kim, S. H. Rhee, and D. Y. Kim, "Effect of Initial Particle Size on Microstructure of Liquid-Phase Sintered $\alpha$-Silicon Carbide," J. Eur. Ceram. Soc., 20 945-49 (2000). https://doi.org/10.1016/S0955-2219(99)00239-3
  15. W. G. Yoon, H. Y. Kim, J. A. Lee, and J. J. Kim, "Effects of Particle Size of Alumina on the Behaviors of Tape Casting and Sintering of Alumina-Talc System," J. Kor. Ceram. Soc., 34 [12] 1213-20 (1997).
  16. K. Lin, J. Chang, J. Lu, W. Wu, and Y. Zeng, "${\beta}-Ca_3(PO_4)_2$ Bioceramics Prepared Using Nano-Size Powders," Ceram. Int., 33 979-85 (2007). https://doi.org/10.1016/j.ceramint.2006.02.011