DOI QR코드

DOI QR Code

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun (Department of Radiological Science, Konyang University) ;
  • Park, Joo-Seok (Korea Institute of Ceramic Engineering and Technology) ;
  • Ahn, Jong-Pil (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kwang-Hyun (Inderstry-Academic Cooperation Foundation, Konyang University) ;
  • Tae, Ki-Sik (Department of Biomedical Engineering, Konyang University) ;
  • Lee, Hyun-Ju (Department of Physical Therapy, Konyang University) ;
  • Kim, Do-Kyung (Inderstry-Academic Cooperation Foundation, Konyang University)
  • Received : 2012.12.11
  • Accepted : 2013.05.29
  • Published : 2013.05.31

Abstract

Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

Keywords

References

  1. M. L. Cohen, "Nanotubes, Nanoscience, and Nanotechnology," Mat. Sci. Eng., 15 [1-2] 1-11 (2001). https://doi.org/10.1016/S0928-4931(01)00221-1
  2. A. C. Begg, D. Sprong, A. Balm, and J. M. C. Martin, "Premature Chromosome Condensation and Cell Separation Studies in Biopsies from Head and Neck Tumors for Radio Sensitivity Prediction," Radiother. Oncol., 62 [3] 335-43 (2002). https://doi.org/10.1016/S0167-8140(01)00498-4
  3. V. G. Roullin, J. R. Deverre, L. Lemaire, F. Hindre, M. C. Venier-Julienne, R. Vienet, and J. P. Benoit, "Anti-Cancer Drug Diffusion Within Living Rat Brain Tissue: an Experimental Study Uusing H-3 (6)-5-fluorouracil-loaded PLGA Microspheres," Eur. J. Pharm. Biopharm., 53 [3] 293-99 (2002). https://doi.org/10.1016/S0939-6411(02)00011-5
  4. C. V. Mura, M. L. Becker, A. Orellana, and D. Wolff, "Immunopurification of Golgi Vesicles by Magnetic Sorting," J. Immunol. Methods, 260 [1-2] 263-71 (2002). https://doi.org/10.1016/S0022-1759(01)00546-4
  5. D. R. Call, F. J. Brockman, and D. P. Chandler, "Detecting and Genotyping Escherichia Coli O157 : H7 Using Multiplexed PCR and Nucleic Acid Microarrays," Int. J. Food Microbiol., 67 [1-2] 71-80 (2001). https://doi.org/10.1016/S0168-1605(01)00437-8
  6. A. Chakraborty, "Kinetics of the Reduction of Hematite to Magnetite Near its Curie Transition," J. Magn. Magn. Mater., 204 [1-2] 57-60 (1999). https://doi.org/10.1016/S0304-8853(99)00163-8
  7. D. K. Kim, Y. Zhang, W. Voit, K. V. Kao, J. Kehr, B. Bjelke, and M. Muhammed, "Superparamagnetic Iron Oxide Nanoparticles for Bio-Medical Applications," Scripta Mater., 44 [8-9] 1713-17 (2001). https://doi.org/10.1016/S1359-6462(01)00870-3
  8. D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, and M. Muhammed, "Synthesis and Characterization of Surfactant- Coated Superparamagnetic Monodispersed Iron Oxide Nanoparticles," J. Magn. Magn. Mater., 225 [1-2] 30-36 (2001). https://doi.org/10.1016/S0304-8853(00)01224-5
  9. V. T. Peikov, K. S. Jeon, and A. M. Lane, "Characterization of Magnetic Inks by Measurements of Frequency Dependence of AC Susceptibility," J. Magn. Magn. Mater., 193 [1-3] 307-10 (1999). https://doi.org/10.1016/S0304-8853(98)00514-9
  10. M. S. Pinho, M. L. Gregori, R. C. R. Nunes, and B. G. Soares, "Aging Effect on the Reflectivity Measurements of Polychloroprene Matrices Containing Carbon Black and Carbonyl-Iron Powder," Polym. Degrad. Stab., 73 [1] 1-5 (2001). https://doi.org/10.1016/S0141-3910(00)00198-1
  11. D. S. Mathew and R. S. Juang, "An Overview of the Structure and Magnetism of Spinel Ferrite Nanoparticles and Their Synthesis in Microemulsions," Chem. Eng. J., 129 [1-3] 51-65 (2007). https://doi.org/10.1016/j.cej.2006.11.001
  12. V. Tsakaloudi, E. Eleftheriou, M. Stoukides, and V. Zaspalis, "Electromagnetic Properties of Mn-Doped NiCuZn-Ferrites," J. Magn. Magn. Mater., 318 [1-2] 58-64 (2007). https://doi.org/10.1016/j.jmmm.2007.04.023
  13. K. J. Klabunde and C. Mohs, "Chemistry of Advanced Materials: An Overview," pp. 271-316, Ed. by L. V. Interrante and M. J. Hampden-Smith, WILEY-VCH Press, New York, 1998.
  14. Q. Chen, A. J. Rondinone, B. C. Chakoumakos, and Z. J. Zhang, "Synthesis of Superparamagnetic $MgFe_2O_4$ Nanoparticles by Coprecipitation," J. Magn. Magn. Mater., 194 [1-3] 1-7 (1999). https://doi.org/10.1016/S0304-8853(98)00585-X
  15. A. Goldman, "Modern Ferrite Technology," pp. 211-302, Ed. by Van Nostrand Reinhold, Springer Press, New York, 2006.
  16. B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, "Magnetic Fluids: Engineering Application," pp. 31-35, Oxford University Press, Oxford, 1993.
  17. M. Milanoviæ, E. G. Moshopoulou, D. Stamopoulos, E. Devlin, K. P. Giannakopoulos, A. G. Kontos, K. Eleftheriadis, M. I. Gini, and L. M. Nikoliæ, "Structure and Magnetic Properties of $Zn_{1x}In_xFe_2O_4$ and $ZnYxFe_{2x}O_4$ Nanoparticles Prepared by Coprecipitation," Ceram. Int., 39 [3] 3235-42 (2013). https://doi.org/10.1016/j.ceramint.2012.10.011
  18. E. Kiani, A. H. Rozatian, and M. Yousefi, "The Effects of Doping on Crystal Structure, Magnetic and Microwave Properties of $SrFe_{12-2x}Lax (Mn_{0.5}Zr_{0.5})xO_{19}$ Nanoparticles," J. Supercond. Nov. Magn., 26 [3] 733-38 (2013). https://doi.org/10.1007/s10948-012-1809-5
  19. A. Cabanas and M. Poliakoff, "The Continuous Hydrothermal Synthesis of Nano-Particulate Ferrites in Near Critical and Supercritical Water," J. Mater. Chem., 11 1408-16 (2001). https://doi.org/10.1039/b009428p
  20. M. Toprak, "Synthesis and Fabrication of Nanostructured Thermoelectric Materials," pp. 1-51, Licentiate Thesis Press, Stockholm, 2001.
  21. R. M. German, "Powder Metallurgy Science," 2nd Ed., pp. 68-95, Metal Powder Industries Federation, Princeton, 1994.
  22. B. Viswanathan and V. R. K. Murthy, "Ferrite Materials: Science and Technology," pp. 82-116, Narosa Publishing House press, New Delhi, 1990.
  23. V. M. Bujoreanu and E. Segal, "DSC Study of Water Elimination from the Coprecipitated Ferrite Powders," J. Therm. Anal. Calorim., 68 191-97 (2002). https://doi.org/10.1023/A:1014957215646
  24. V. M. Bujoreanu and E. Segal, "On the Dehydration of Mixed Oxides Powders Coprecipitated from Aqueous Solutions," Solid State Sci., 3 407-15 (2001). https://doi.org/10.1016/S1293-2558(01)01152-9
  25. K. V. P. M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lenddvai, and I. Felner, "Sonochemical Preparation of Nanosized Amorphous $NiFe_2O_4$ Particles," J. Phys Chem. B, 101 6409-14 (1997). https://doi.org/10.1021/jp970893q
  26. D. H. Chen and X. R. He, "Synthesis of Nickel Ferrite Nanoparticles by Sol-Gel Method," Mater. Res. Bull., 36 1369-77 (2001). https://doi.org/10.1016/S0025-5408(01)00620-1

Cited by

  1. Particle size dependence of magnetic features for Ni0.6-xCuxZn0.4Fe2O4 spinel nanoparticles vol.360, pp.None, 2014, https://doi.org/10.1016/j.jmmm.2014.01.035