DOI QR코드

DOI QR Code

Myopia Control Lens, Single Vision Lens, Reverse Geometry Contact Lens의 연령에 따른 굴절교정상태 변화에 대한 추적 연구

Changes of Refractive Correction Value with Different Age Group: A Case for Myopia Control Lens, Single Vision Lens and Reverse Geometry Contact Lens

  • Yoon, Min-Hwa (Dept. of Biomedical Engineering, Chonnam National University)
  • 투고 : 2013.01.30
  • 심사 : 2013.03.16
  • 발행 : 2013.03.31

초록

목적: 연령에 따라 역기하콘택트렌즈(reverse geometry contact lens), MC렌즈(myopia control lens)를 착용 한 후 근시진행억제 효과에 대한 굴절교정값의 변화를 단초점렌즈(single vision lens)와 비교해 알아보고자 한다. 방법: 6세에서 15세 사이의 아동에게 역기하콘택트렌즈 57안, MC렌즈 56안, 단초점렌즈 78안을 각각 착용시킨 후 연령에 따라 Group 1은 10세 이하, Group 2는 11세에서 15세 이하, Group 3은 연구 대상을 모두 포함하여 3그룹으로 나눴다. 이를 바탕으로 12개월 이하, 13~24개월, 25~36개월 까지 굴절교정값의 변화를 통한 근시 진행 억제 효과를 알아보고 통계적 유의성을 검증하고자 하였다. 결과: 착용기간에 따른 굴절교정값의 변화는 Group 3에서 12개월 이하에서는 역기하콘택트렌즈를 착용한 아동에서 변화가 없었고, MC렌즈는 $-0.36{\pm}0.10$ D, 단초점렌즈는 $-0.67{\pm}0.52$ D가 유의하게 변화되었다(P<0.05). 13~24개월에서 역기하콘택트렌즈는 $0.18{\pm}0.49$ D, MC렌즈는 $0.60{\pm}0.42$ D, 단 초점렌즈는 $1.37{\pm}0.72$ D로 유의(P<0.05)하게 변화되었다. 25~36개월에서 역기하콘택트렌즈는 $0.29{\pm}0.61$ D, MC렌즈는 $0.93{\pm}0.57$ D, 단초점렌즈는 $1.72{\pm}0.78$ D로 유의(P<0.05)하게 변화되었다. Group 1에서는 36개월 까지 역기 하콘택트렌즈는 $0.29{\pm}0.73$ D로 MC렌즈는 $1.07{\pm}0.59$ D로 단초점 렌즈는 $1.75{\pm}0.74$ D로 유의(P<0.05)하게 증가하였으며 Group 2에서는 36개월 까지 역기하콘택트렌즈는 $0.28{\pm}0.42$ D로 MC렌즈는 $0.75{\pm}0.49$ D로 단초점 렌즈는 $1.70{\pm}0.84$ D로 유의(P<0.05)하게 증가하여 굴절교정값의 변화는 10세 이하가 11세 이상보다 유의(P<0.05)하게 큰 것으로 나타났다. 결론: 본 연구 결과 12개월 이하의 착용시 역기하콘택트렌즈는 모든 연령에서 굴절교정값의 변화가 없었고, MC렌즈는 모든 연령에서 단초점렌즈보다 더 낮은 시력변화폭을 나타내 근시진행의 억제효과가 있으며, 13~36개월 착용시 역기하콘택트렌즈와 MC렌즈는 모든 연령에서 단초점렌즈보다 낮은 시력변화를 보여 근시진행의 억제효과가 있는 것으로 사료된다.

Purpose: Changes of refractive correction value in different age group were investigated. Regarding the inhibitive effects against myopia progression after wearing reverse geometry contact lenses and myopia control lenses (MC lenses), the effects after wearing single vision lenses were compared. Methods: We organized children between the ages of six and fifteen into three groups by age, and distributed fifty-seven reverse geometry contact lenses, fifty-six MC lenses and seventy-eight single vision lenses among them to be worn. Group 1 consisted of children aged ten and under, Group 2 consisted of children between the ages of eleven and fifteen, and Group 3 represents all of the study participants. The aim of this study was to learn the inhibitive effects against myopia progression attained by changes of refractive correction value and to verify their statistical significance at twelve months and under, thirteen to twenty-four months and twenty-five to thirty-six months. Results: Changes of refractive correction value by each length of use in Group 3 were as follows. For the age group of under twelve months, participants using the reverse geometric contact lens showed no change, while those using the MC or single vision lens had significant changes (P<0.05) of $-0.36{\pm}0.10$ D and $-0.67{\pm}0.52$ D, respectively. Users of all three lens types displayed significant change (P<0.05), in the age group of between thirteen and twenty-four months, of $0.18{\pm}0.49$ D, $0.60{\pm}0.42$ D and $1.37{\pm}0.72$ D for users of the reverse geometry contact lens, the MC lens and the single vision lens, respectively. There were significant changes (P<0.05) of $0.29{\pm}0.61$ D, $0.93{\pm}0.57$ D and $1.72{\pm}0.78$ in the same respective order as the above in the age group of twenty-five to thirty-six months. Refractive correction value showed changes with different age group. Group 1 displayed significant changes (P<0.05) of $0.29{\pm}0.73$ D, $1.07{\pm}0.59$ D and $1.75{\pm}0.74$ D for users of the reverse geometry contact lens, MC lens and single vision lens, respectively, up to thirty-six months of lens wearing; Group 2, also up to thirty-six months, displayed significant changes (P<0.05) of $0.28{\pm}0.42$ D, $0.75{\pm}0.49$ D and $1.70{\pm}0.84$ D in the same respective order, and changes in refractive correction for the age group under ten years was significantly greater (P<0.05) for the age group of eleven and older. Conclusions: The results found in this study demonstrate that there were no changes of refractive correction value for the case of wearing reversing geometry contact lens up to twelve month or less. MC lens showed less changes in variations of visual acuity for all users which might be resulted in inhibiting progression of myoptia. When both reverse geometry contact lens and the MC lens are wearing for the period from 13 to 36 month, both lens showed less changes in variation of visual acuity for all users. The results suggested that the less changes in variation of visual acuity of both lens had an effect on inhibiting progression of myopia.

키워드

참고문헌

  1. Saw SM, Nieto FJ, Katz J, Schein OD, Ievy B, Chew SJ. Factors related to the progression of myopia in Singaporean children. Optom Vis Sci. 2000;77(10):549-554. https://doi.org/10.1097/00006324-200010000-00009
  2. Mutti DO, Zadnik K. The utility of three predictors of childhood myopia: a Bayesian analysis. Vision Res. 1995;35(9):1345-1352. https://doi.org/10.1016/0042-6989(94)00225-B
  3. Chen CJ, Cohen BH, Diamond EL. Genetic and environmental effects on the development of myopia in Chinese twin children. Ophthalmic Pediatr Genet. 1985;6(1-2):353-359.
  4. Lam CS, Goldschmidt E, Edward MH. Prevalence of myopia in local and international schools in Hong Kong. Optom Vis Sci. 2004;81(5):317-322. https://doi.org/10.1097/01.opx.0000134905.98403.18
  5. Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, Katz J. Incidence and progression of myopia in Singaporean school children. Invest Ophtalmol Vis Sci. 2005;46(1):51-57. https://doi.org/10.1167/iovs.04-0565
  6. Junghans BM, Crewther SG. Prevalence of myopia among primary school in eastern Sydney. Clin Exp Optom. 2003;86(5):339-345. https://doi.org/10.1111/j.1444-0938.2003.tb03130.x
  7. Duke-Elder S. System of ophthalmology, 1st Ed. St Louis: C.V. Mosby. 1970;5:225-227.
  8. Yoon DH, Lee SW, Choi U. Ophthalmology, 7th Ed. Seoul: Ilchogak. 2005;224-225.
  9. The Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. Am. J. Epidemiol. 1993;137(7):749-757.
  10. Ha NR, You JK, Kim JM. Ten-year refractive error and astigmatism changes in korean subjects. J. Korean Oph Opt Soc. 2010;15(4):389-397.
  11. Goss DA, Cox VD. Trend in the change of clinical refractive error in myopes. J Am Optom Assoc. 1985;56(8):608-613.
  12. Edwards MH, Li RW, Lam CS, Lew JK, Yu BS. The Hong Kong progressive lens myopia control study: study design and main findings. Invest Ophthamol Vis Sci. 2002; 43(9): 2852-2858.
  13. Gwiazda JE, Hyman L, Norton TT, Hussein ME, Marsh-Tootle W, Manny R, et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest Ophthamol Vis Sci. 2004;45(7):2143-2151. https://doi.org/10.1167/iovs.03-1306
  14. Siatkowski RM, Cotter S, Miller JM, Scher CA, Crockett RS, Novack GD, et al. Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: a 1-year, multicenter, double-masked, placebo-controlled parallel study. Arch Ophthalmol. 2004;122(11):1667-1674. https://doi.org/10.1001/archopht.122.11.1667
  15. Siatkowski RM, Cotter SA, Crockett RS, Miller JM, Novack GD, Zadnik K. Two-year multicenter, randomized, double-masked, placebo-controlled parallel safety and efficacy study 2% pirenzepine ophthalmic gel in children with myopia. J AAPOS. 2008;12(4):332-339. https://doi.org/10.1016/j.jaapos.2007.10.014
  16. Adler D, Millodot M. The possible effect of under correction on myopia progression in children. Clin Exp Optom. 2006;89(5):315-321. https://doi.org/10.1111/j.1444-0938.2006.00055.x
  17. Walline JJ, Jones LA, Mutti DO, Zadnik K. A randomized trial of the effects of rigid contact lenses on myopia progression. Arch Ophthalmol. 2004;122(12):1760-1769. https://doi.org/10.1001/archopht.122.12.1760
  18. Shin DB, Lee YW, Kim MK, Kim SY, Lee JL, Choi SW. The effect of RGP lens and reverse geometry lens on corneal epithelial proliferation rate in rabbit. J Korean Ophthalmol Soc. 2004;45(4):655-667.
  19. Cheung SW, Cho P, Fan D. Asymmetrical increase in axial length in the two eyes of a monocular orthokeratology patient. Optom Vis Sci. 2004;81(9):653-658. https://doi.org/10.1097/01.opx.0000144742.57847.b1
  20. Lam CS, Edwards M, Millodot M, Goh WS. A 2-year longitudinal study of myopia progression and optical component changes among Hong Kong schoolchildren. Optom Vis Sci. 1999;76(6):370-380. https://doi.org/10.1097/00006324-199906000-00016
  21. Kim JM, Jang BS, Oh HJ, Choe JH, Mah KC. The analysis of myopic progression in students who live in Ilsan. Korean J Vis Sci. 2006;8(1):35-51.
  22. Kim CG, Hwang IH, Yoo TW, Huh BY, Im HS. A study on factors related to visual acuity in elementary school children. The Korean Journal of family medicine. 1991;12(10):22-29.
  23. Donders F. Accomodation and refraction of the eye, 1st Ed. New York; Robert Krieger. 1979:429.
  24. Toselli C. Rilievie considerazione sul decorso evolutivo della miopia nelle prime tre decadi divita. Ann Ottal. 1961;87(1):796.
  25. Tan NW, Saw SM, Lam DS, Cheng HM, Rajan U, Chew SJ. Temporal variations in myopia progression in Singaporean children within an academic year. Optom Vis Sci. 2000;77(9):465-472. https://doi.org/10.1097/00006324-200009000-00007
  26. Mantyjarvi MI. Predicting of myopia progression in school children. J Pediatr. Ophthalmol Strabismus. 1985;22(2):71-75.
  27. Benjamin, William J. Borish's Clinical Refraction, 1st Ed. Cananda; W.B. saunders company. 1998:1134-1135.
  28. Phelps WL, Muir J. Anisometropia and Strabismus. Am Orthopt J. 1977;27(1):131-133.
  29. Saw SM, Chua WH, Gazzard G, Koh D, Tan DT, Stone RA. Eye growth changes in myopic children in Singapore. Br J Ophthalmol. 2005;89(11):1489-1494. https://doi.org/10.1136/bjo.2005.071118
  30. Ha NR, Kim HJ. Follow-up study on changes of refractive error for ten years in children and teenagers in optometric practice. J Korean Oph Opt Soc. 2011;16(4):425-431.
  31. Lee WH, Park YK, Seo JM, Shin JH. The inhibitory effect of myopia and astigmatic progression by orthokeratology lens. J Korean Ophthalmol Soc. 2010;52(11):1269-1274.
  32. Gwiazda J, Marsh-Tootle WL, Hyman L, Hussein M, Norton TT, COMET Study Group. Baseline refractive and ocular component measures of children enrolled in the correction of myopia evaluation trial(COMET). Invest Ophthalmol Vis Sci. 2002;43(2):314-321.
  33. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12 month results. Optom Vis Sci. 2010;87(9):631-641. https://doi.org/10.1097/OPX.0b013e3181ea19c7
  34. Leung JT, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci. 1999;76(6):346-354. https://doi.org/10.1097/00006324-199906000-00013
  35. Kim CJ, Kim HJ, Kim JM. Comparison of contrast sensitivity at near between functional progressive addition lenses and single vision lenses. J Korean Oph Opt Soc. 2010;15(4):381-388.
  36. Jung JW, Lee KS, Yoo WK. Effects of the progression control of myopia control lenses and single vision lenses. J Korean Oph Opt Soc. 2012;17(1):19-26.