DOI QR코드

DOI QR Code

UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화

Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System

  • 김진길 (충남대학교 화학공학과) ;
  • 김성수 (경기대학교 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과) ;
  • 이의동 (하나검사기술(주)) ;
  • 강용 (충남대학교 화학공학과)
  • Kim, Jin-Kil (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Sung-Su (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Hong, Sung-Chang (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Lee, Eui-Dong (HANA I&E) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2012.09.17
  • 심사 : 2013.04.09
  • 발행 : 2013.06.01

초록

악취 유발 물질인 $H_2S$를 처리하기 위한 UV/photocatalysis의 성능 향상에 관한 연구를 수행하였다. 광촉매 물질을 선정하기 위하여 EtOH을 기준물질로 사용하였으며, 광촉매 반응기의 광활성은 광촉매 반응기의 표면에 코팅된 광촉매의 표면특성과 높은 상관성을 나타냄을 확인하였다. PS 광촉매(STS-01)가 코팅된 광촉매 반응기는 기체선속도가 0.01 m/s, 상대습도가 40%의 조건에서 약 80%의 $H_2S$ 산화효율을 보였으나, 그 이상의 선속도에서 반응활성은 급격히 감소하였다. 광촉매 반응기의 성능유지를 위하여 백금을 광촉매에 담지하였는데 이는 같은 실험조건에서 95% 이상의 우수한 $H_2S$ 전환율을 나타내었다.

Enhancement of photocatalytic activity of UV/photocatalysis was carried out to oxidize the gaseous $H_2S$ in a tubular reactor coated with photocatalyst of sol type $TiO_2$. EtOH was used as the standard material to select the photocatalyst, and it was confirmed that the reactor activity was dependent on the coated surface characteristics. The selected photocatalytic reactor, which coated with STS-01, showed about 80% conversion when the gas linear velocity was 0.01 m/s and relative humidity was 40%. However, the conversion level of the reaction decreased significantly with increasing gas linear velocity. Pt was loaded on the photocatalyst to enhance and maintain the performance of the reactor, which enhanced the conversion level of $H_2S$ more than 95% under the same experimental condition.

키워드

참고문헌

  1. Lee, S. J., Cho, I. H., Lee, H. K. and Zoh, K. D., "A Study on the Treatment of High Explosives (TNT, RDX, HMX) Using $TiO_{2}$ Photocatalyst," Journal of Korean Society of Environmental Engineers, 24(6), 1071-1080(2002).
  2. Oh, K. J., Choi, W. J., Lee, S. S., Lee, J. J. and Shon, B. H., "The Degradation of $CO_{2}$ and $H_{2}S$ Using Aqueous Alkanolamine Solutions," Journal of Korean Society of Environmental Engineers, 24(6), 985-994(2002).
  3. Yang, Y. and Allen, E. R., "Biofiltration Control of Hydrogen Sulfide. 1. Design and Operational Parameters," J. Air Waste manage. Assoc, 44, 863-868(1994).
  4. Chung, Y. C., Huang, C. and Tseng, C. T., "Biodegradation of Hydrogen-Sulfide by a Laboratory-Scale Immobilized Pseudomonas- Putida Ch11 Biofilter," Biotechnol. Prog., 12(6), 773-778(1996). https://doi.org/10.1021/bp960058a
  5. Lim, K.-H., Park, S.-W. and Lee, E.-J., "Simultaneous Treatment of Hydrogen Sulfide and Ammonia Contained in Waste-air with a Hybrid System Composed of Photo-catalytic Reactor and Biofilter with the Media Fixed with Hydrogen Sulfide Oxidizing Strain Enterobacter sp. YES-1153 and Ammonia Oxidizing Strain Bacillus cereus YCa-1214," Theor. Appl. Chem. Eng., 12, 524-527(2006).
  6. Asano, A., Keisuke, O. and Kei, K., "Fixing of Titania Powder by an Arc Thermal Spraying and Photo-Oxidation Ability," Kenkyu Hokoku - Ehime-Ken Kogyo Gijutsu Senta, 35, 45-50(1997).
  7. Avila, P., Bahamonde, A., Blanco, J., Sanchez, B., Cardona, A. I. and Romero, M., "Gas-phase Photo-assisted Mineralization of Volatile Organic Compounds by Monolithic Titania Catalysts," Appl. Catal. B: Environ., 17, 75-88(1998). https://doi.org/10.1016/S0926-3373(97)00104-5
  8. Fu, X., Zhang, X., Song, S., Wang, S. and Tao, M., "Preparation of Nano-Sized $TiO_{2}$/Pt/Glass Thin Films by Sol-Gel Process and Their Photoelectro Catalytic Properties," Gongneng Cailiao, 28(4), 411-414(1997).
  9. Poon, C. S. and Cheung, E., "NO Removal Difficiency of Photocatalytic Paving Blocks Prepared with Recycled Materials," Constr. Build. Mater., 21, 1746-1753(2007). https://doi.org/10.1016/j.conbuildmat.2006.05.018
  10. Kwon, T. R., Roo, W. H., Lee, C. W. and Lee, W. M., "Industrial Chemistry,Catalysis/Reaction Engineering : Preparation of Wall Paper Coated with Modified $TiO_{2}$ and Their Photocatalytic Effects for Removal of NO in Air," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 43, 1-8(2005).
  11. Dibble, L. A. and Raupp, G. B., "Fluidized-bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Atreams," Environ, Sci. Tech., 26, 492-495(1992). https://doi.org/10.1021/es00027a006
  12. Hoffmann, A. J., Carraway, E. R. and Hofmann, M. R., "Photocatalytic Production of $H_{2}O_{2}$ and Organic Peroxides on Quantum-sized Semiconductor Colloids," Environ. Sci. Tech., 28, 776-785(1994). https://doi.org/10.1021/es00054a006
  13. Kormann, C., Bahnemann, D. W. and Hofman, M. R., "Photolysis of Chloroform and Other Organic Molecules in Aqueous Titanium Dioxide Suspensions," Environ. Sci. Tech., 25, 494-500 (1991). https://doi.org/10.1021/es00015a018
  14. In, S. I., "Efficient Cisible Light Activated Anion Doped Photocatalysts," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 505(2011). https://doi.org/10.9713/kcer.2011.49.5.505
  15. Park, K. M., Kim, T. Y., Kim, J. G. and Cho, S. Y., "Efficiency Characteristics of Dye-sensitized Solar Cells with Heat Treatment Temperature of P-25 photocatalyst," Korean Chem. Eng. Res.(HWATable HAK KONGHAK), 48, 649(2010).
  16. Kwon, T. R., Roo, W. H., Lee, C. W. and Lee, W. M., "Preparation of Wall Paper Coated with Modified $TiO_{2}$ and Their Photocatalytic Effects for Removal of NO in Air," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 43, 1(2005).
  17. Chen, D. and Ray, A. K., "Removal of Toxic Metal Ions from Wastewater by Semiconductor Photocatalysis," Chem. Eng. Sci., 56, 1561-1570(2001). https://doi.org/10.1016/S0009-2509(00)00383-3
  18. Arai, T., Horiguchi, M., Yanagida, M., Gunji, T., Sugihara, H. and Sayama, K., "Complete Oxidation of Acetaldehyde and Toluene over a Pd/$WO_{3}$ Photocatalyst Under Fluorescent- or Visible-light Irradiation," Chem. Commun., 43, 5565-5567(2008).
  19. Yang, C. C., Yu, H., Linden, B., Wu, J. C. S. and Mul, G., "Artificial Photosynthesis over Crystalline $TiO_{2}$-based Catalysts: Fact or Fiction?," J. Am. Chem. Soc., 132, 8398-8406(2010). https://doi.org/10.1021/ja101318k
  20. Carbajo, M., Enciso, E. and Torralvo, M. J., "Synthesis and Charcaterization of Macro-meso Porous Titania," Colloids Surf. A: Physicochem. Eng. Asp., 293, 72-79(2007). https://doi.org/10.1016/j.colsurfa.2006.07.009
  21. Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. and Chau, C. K., "Size Effects in Gas-phase Photo-oxidation of Trichloroethylene Using Nanometer-sized $TiO_{2}$ Catalysts," J. Catal., 192, 185-196(2000). https://doi.org/10.1006/jcat.2000.2838
  22. Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M., "Morphology of a $TiO_{2}$ Photo Catalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases," J. Catal., 203, 82-86(2001). https://doi.org/10.1006/jcat.2001.3316
  23. Yang, J., Zhang, J., Zhu, L., Chen, S., Zhang, Y., Tang, Y., Zhu, Y. and Li, Y., "Syntheses of Nano Titania Particles Embedded in Mesoporous SBA-15: Characterization and Photocatalytic Activity," J. Hazard. Mater., B 137, 952-958(2006). https://doi.org/10.1016/j.jhazmat.2006.03.017
  24. Kubo, W. and Tarsuma, T., "Photocatalytic Remote Oxidation with Various Photocatalysts and Enhancement of Its Activity," J. Mater. Chem., 30, 3104-3108(2005).
  25. Zhan, S., Chen, D., Jiao, X. and Tao, C., "Long $TiO_{2}$ Hollow Fibers with Mesoporous Walls : Sol-Gel Combined Electrospun Fabrication and Photocatalytic Properties," J. Phys. Chem. B, 110, 11199-11204(2006). https://doi.org/10.1021/jp057372k
  26. Kozlova E. A., Lyubina T. P., Nasalevich M. A., Vorontsov A. V., Miller, A. V., Kaichev, V. V. and Parmon, V. N., "Influence of the Method of Platinum Deposition on Activity and Stability of Pt/$TiO_{2}$ Photocatalysts in the Photocatalytic Oxidation of Dimethyl Methylphosphonate," Catal. Commun., 12, 597-601(2011). https://doi.org/10.1016/j.catcom.2010.12.007
  27. Obee, T. N. and Brown, R. T., "$TiO_{2}$ Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene and 1,3-butadiene," Environ, Sci. Tech., 29, 1223-1231(1995). https://doi.org/10.1021/es00005a013