DOI QR코드

DOI QR Code

Ni-Pd/CeO2-ZrO2 금속모노리스 촉매체를 사용한 부분산화반응에 의한 합성가스 제조

Syngas Production by Partial Oxidation Reaction over Ni-Pd/CeO2-ZrO2 Metallic Monolith Catalysts

  • 양정민 (충북대학교 화학공학과, 산업과학기술연구소) ;
  • 최정은 (충북대학교 화학공학과, 산업과학기술연구소) ;
  • 김용진 (에어코리아(주)) ;
  • 이종대 (충북대학교 화학공학과, 산업과학기술연구소)
  • Yang, Jeong Min (Dept. of Chemical Engineering, Research Industrial Sci. & Tech., Chungbuk National University) ;
  • Choe, Jeong-Eun (Dept. of Chemical Engineering, Research Industrial Sci. & Tech., Chungbuk National University) ;
  • Kim, Yong Jin (Air korea) ;
  • Lee, Jong Dae (Dept. of Chemical Engineering, Research Industrial Sci. & Tech., Chungbuk National University)
  • 투고 : 2013.02.22
  • 심사 : 2013.03.19
  • 발행 : 2013.06.01

초록

합성가스를 생산하기 위한 메탄의 부분산화반응 특성을 $Ni/CeO_2-ZrO_2$, $Ni-Ru/CeO_2-ZrO_2$$Ni-Pd/CeO_2-ZrO_2$ 촉매체를 이용하여 조사하였다. 메탄의 부분 산화 개질 반응에서 촉매의 높은 활성과 안정성을 위하여 허니컴 구조의 금속모노리스 촉매 체를 적용하였다. 촉매분석은 XRD와 FE-SEM을 사용하였으며, 제조된 촉매들의 합성가스 제조 특성은 반응물 비(O/C), GHSV와 온도를 변화시키면서 연구하였다. 개질 실험에서 사용된 촉매 중에서 $Ni-Pd/CeO_2-ZrO_2$ 촉매 체가 가장 높은 활성을 보여 주었으며, $900^{\circ}C$, GHSV=10,000 $h^{-1}$과 O/C=0.55에서 99%의 메탄 전환율을 얻었다. O/C 비가 증가함에 따라 수소 yield는 증가되고, 반면에 CO yield는 거의 일정하게 유지됨을 확인할 수 있었다. 또한 GHSV가 증가할수록 메탄의 전환율은 감소하였으며, 높은 메탄의 전환율을 얻을 수 있는 GHSV의 범위는 10,000 $h^{-1}$ 이하임을 알 수 있었다.

The partial oxidation reaction of methane was investigated to produce syngas with $Ni/CeO_2-ZrO_2$, $Ni-Ru/CeO_2-ZrO_2$ and $Ni-Pd/CeO_2-ZrO_2$ catalysts. Honeycomb metallic monolith was applied in order to obtain high catalytic activity and stability in partial oxidation reforming. The catalysts were characterized by XRD and FE-SEM. The influence of various catalysts on syngas production was studied for the feed ratio (O/C), GHSV and temperature. Among the catalysts used in the experiment, the $Ni-Pd/CeO_2-ZrO_2$ catalyst showed the highest activity. The 99% of $CH_4$ conversion was obtained at the condition of T=$900^{\circ}C$, GHSV=10,000 $h^{-1}$ and feed ratio O/C=0.55. It was confirmed that $H_2$ yield increased slightly as O/C ratio increased, while CO yield remained almost constant. Also, $CH_4$ conversion decreased as GHSV increased. It was found that the safe range of GHSV for high $CH_4$ conversion was estimated to be less than 10,000 $h^{-1}$.

키워드

참고문헌

  1. Koo, J. B., Sin, J. S., Yeong, J. M. and Lee, J. D., "Autothermal Reforming Reaction at Fuel Process Systems of $1Nm^{3}/h$," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(5), 802-807(2012). https://doi.org/10.9713/kcer.2012.50.5.802
  2. Lee, S. H., Mo, Y. G., Shin, D. G., Baek, Y. S. and Cho, W. I., "The Study on Methane Reforming by $CO_{2}$ and Steam for Manufacture of Synthesis Gas," Trans. of the Korean Hydrogen and New Energy Society, 15(4), 301-308(2012).
  3. Cho, H. S., Chung, J. S., Beak, S. J., Choi, W. J., Kim, J. J., Yoon, S. K. and Lee, J. C., "Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites," Appl. Chem. Eng., 23(3), 339-343(2012).
  4. Krumpelt, M., Kumar, R. and Myles, K. M., "Fundametals of Fuel Cell System in Integration," J. Power Sources, 49, 37-51(1994). https://doi.org/10.1016/0378-7753(93)01794-I
  5. Acres, G. J. K., "Recent Advances in Fuel Cell Technology and Its Applications," J. Power Sources, 100, 60-66(2001). https://doi.org/10.1016/S0378-7753(01)00883-7
  6. Park, S. H., Chun, B. H. and Kim, S. H., "Effects of $La_{2}O_{3}$ on $ZrO_{2}$ Supported Ni Catalysts for Autothermal Reforming of $CH_{4}$," Korean J. Chem. Eng., 28(2), 402-408(2011). https://doi.org/10.1007/s11814-010-0356-7
  7. Edwards, J. H., "Potential Sources of $CO_{2}$ and the Options for Its Large-scale Utilisation Now and in the Future," Catal. Today, 23(1), 59-66(1995). https://doi.org/10.1016/0920-5861(94)00081-C
  8. Juan-juan, J., Roman-Martinez, M. C. and Illan-Gomez, M. J., "Catalytic Activity and Characterization of Ni/$Al_{2}O_{3}$ and Nik/$Al_{2}O_{3}$ Catalysts for $CO_{2}$ Methane Reforming," Appl. Catal. A: Gen., 264, 169-174(2004). https://doi.org/10.1016/j.apcata.2003.12.040
  9. Suwa, Y., Ito, S. I., Kameoka, S., Tomishige, K. and Kunimori, K., "Comparative Study Between Zn-Pd/C and Pd/ZnO Catalysts for Steam Reforming of Methanol," Appl. Catal. A: Gen., 267, 9-16(2004). https://doi.org/10.1016/j.apcata.2004.02.016
  10. Hou, Z., Yokota, O., Tanaka, T. and Yashima, T., "Characterization of Ca-promoted Ni/a-$Al_{2}O_{3}$ Catalyst for $CH_{4}$ Reforming with $CO_{2}$," Appl. Catal. A: Gen., 253, 381-387(2003). https://doi.org/10.1016/S0926-860X(03)00543-X
  11. Hou, Z., Yokota, O., Tanaka, T. and Yashima, T., "A Novel KCaNi/a-$Al_{2}O_{3}$ Catalyst for $CH_{4}$ Reforming with $CO_{2}$," Catal. Lett., 87, 37-42(2003). https://doi.org/10.1023/A:1022849009431
  12. Crisafulli, C., Scir, S., Maggiore, S., Minico, S. and Galvagno, S., "$CO_{2}$ Reforming of Methane over Ni-Ru and Ni-Pd Bimetal-lic Catalysts," Catal. Letter, 59, 21-26(1999). https://doi.org/10.1023/A:1019031412713
  13. Rostrup-Nielsen, J. R., "Activity of Nickel Catalysts for Steam Reforming of Hydrocarbons," J. Catal., 31(2), 173-199(1973). https://doi.org/10.1016/0021-9517(73)90326-6
  14. Shan Xu and Xiaolai Wang, "Highly Active and Coking Resistant Ni/$CeO_{2}$-$ZrO_{2}$ Catalyst for Partial Oxidation of Methane," Fuel, 84, 563-567(2005). https://doi.org/10.1016/j.fuel.2004.10.008
  15. Jung, H., Yoon, W. L., Lee, H., Park, J. S., Shin, J. S., La, H. W. and Lee, J. D., "Fast Start-up Reactor for Partial Oxidation of Methane with Electrically-heated Metallic Monolith Catalyst," J. Power Sources, 124(1) 76-80(2003). https://doi.org/10.1016/S0378-7753(03)00604-9
  16. Dong, F., Suda, A., Tanabe, T., Nagai, Y., Sobukawa, H., Shinjoh, H., Sugiura, M., Descorme, C. and Duprez, D., "Dynamic Oxygen Mobility and a New Insight into the Role of Zr Atoms in Three-way Catalysts of Pt/$CeO_{2}$-$ZrO_{2}$," Catal. Today, 93, 827-832(2004).
  17. Thammachart, M., Meeyoo, V., Risksomboon, T. and Osuwan, S., "Catalytic Activity of $CeO_{2}$-$ZrO_{2}$ Mixed Oxdie Catalysts Prepared Via Sol-gel Technique: CO Oxidation," Catal. Today, 68, 53-61(2001). https://doi.org/10.1016/S0920-5861(01)00322-4
  18. Zhao, S., Zhang, J., Weng, D. and Wu, X., "A Method to form Well-adhered $\gamma$-$Al_{2}O_{3}$ Layers on FeCral Metallic Supports," Surf. Coat. Technol., 167, 97-105(2003). https://doi.org/10.1016/S0257-8972(02)00859-9
  19. Laosiripojana, N. and Assabumrungrat, S., "Methane Steam Reforming over Ni/Ce-$ZrO_{2}$ Catalyst: Influences of Ce-$ZrO_{2}$ Support on Reactivity, Resistance Toward Carbon Formation, and Intrinsic Reaction Kinetics," Appl. Catal. A: Gen., 290, 200-211(2005). https://doi.org/10.1016/j.apcata.2005.05.026
  20. Lee, T. J., Cho, K. T. and Lee, J. D., "Autothermal Reforming of Methane using Metallic Monolith Catalyst," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(6), 663-668(2007).

피인용 문헌

  1. 석탄을 사용한 CO가스 제조를 위한 CO2 전환기술 vol.32, pp.4, 2015, https://doi.org/10.12925/jkocs.2015.32.4.712