DOI QR코드

DOI QR Code

PVdF-HFP와 실리카가 코팅된 실크 견직물의 분리막 특성과 이를 채용한 리튬이온전지의 충방전 특성

Separator Properties of Silk-Woven Fabrics Coated with PVdF-HFP and Silica and the Charge-Discharge Characteristics of Lithium-ion Batteries Adopting Them

  • 오심건 (한밭대학교 화학생명공학과) ;
  • 이영기 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 김광만 (한국전자통신연구원 부품소재연구부문 전력제어소자연구실) ;
  • 이용민 (한밭대학교 화학생명공학과) ;
  • 김상헌 (한밭대학교 화학생명공학과) ;
  • 김용주 (한밭대학교 화학생명공학과) ;
  • 고장면 (한밭대학교 화학생명공학과)
  • Oh, Seem Geon (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Young-Gi (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Lee, Yong Min (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Sang Hern (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Yong Joo (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2013.02.27
  • 심사 : 2013.03.20
  • 발행 : 2013.06.01

초록

실크 견직물 표면에 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)와 실리카 나노입자의 혼합물을 코팅한 분리막을 제조하고 분리막에 전해액을 함침시켜 리튬이온전지용 분리막 겸 전해질로 사용하기 위한 특성이 조사되었다. 코팅막의 제조 시에는 전해액이 침투할 수 있는 미세다공의 형성을 심화시키기 위해 dibutylphthalate (DBP) 가소제의 함량을 변화시키면서 코팅된 분리막의 이온전도도, 함습율, 전기화학적 안정성 등을 조사하였고, 이를 리튬 이온전지에 탑재하여 여러 전류속도에 대한 충방전 특성도 함께 측정하였다. 결과적으로 실리카가 첨가되고 DBP를 40~50 wt% 사용하여 코팅된 실크 분리막이 가장 우수한 분리막 특성 및 고율 충방전 특성을 나타내었다. 이는 (i) 실크 견직물의 우수한 내구성과 내열성 이외에 (ii) DBP에 의한 미세다공 형성, (iii) 실리카에 의한 함습율 향상 등에 의해 코팅막의 표면적 및 코팅된 분리막의 이온전도도가 크게 향상되었기 때문이다.

Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles are coated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhancements in specific surface area and ionic conductivity.

키워드

참고문헌

  1. Venugopal, G., Moore, J., Howard, J. and Pendalwar, S., "Characterization of Microporous Separators for Lithium-ion Batteries," J. Power Sources, 77, 34-41(1999). https://doi.org/10.1016/S0378-7753(98)00168-2
  2. Park, J.-H., Cho, J.-H., Park, W., Ryoo, D., Yoon, S.-J., Kim, J. H., Jeong, Y. U. and Lee, S.-Y., "Close-Packed $SiO_{2}$/Poly (methyl methacrylate) Binary Nanoparticles-Coated Polyethylene Separators for Lithium-ion Batteries," J. Power Sources, 195(24), 8306-8310(2010). https://doi.org/10.1016/j.jpowsour.2010.06.112
  3. Park, J.-H., Park, W., Kim, J. H., Ryoo, D., Kim, H. S., Jeong, Y. U., Kim, D.-W. and Lee, S.-Y., "Close-Packed Poly(methyl methacrylate) Nanoparticle Arrays-Coated Polyethylene Separators for High-Power Lithium-ion Polymer Batteries," J. Power Sources, 196(16), 7035-7038(2011). https://doi.org/10.1016/j.jpowsour.2010.09.102
  4. Jeong, H.-S., Kim, D.-W., Jeong, Y. U. and Lee, S.-Y., "Effect of Phase Inversion on Microporous Structure Development of $Al_{2}O_{3}$/Poly(vinylidene fluoride-hexafluoropropylene)- Based Ceramic Composite Separators for Lithium-ion Batteries," J. Power Sources, 195(18), 6116-6121 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.085
  5. Jeong, H.-S. and Lee, S.-Y., "Closely Packed $SiO_{2}$ Nanoparticles/ Poly(vinylidene fluoride-hexafluoropropylene) Layers-Coated Polyethylene Separators for Lithium-ion Batteries, " J. Power Sources, 196(16), 6716-6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
  6. Gohl, E .P. G. and Vilensky, L. D., Textile Science, 2nd Ed., Longman Cheshire(1980).
  7. Sirichaisit, J., Brookes, V. L., Young, R. J. and Vollrath, F., "Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila edulis) Silks Using Raman Spectroscopy," Biomacromolecules, 4, 387-394(2003). https://doi.org/10.1021/bm0256956
  8. Tarascon, J.-M., Gozdz, A. S., Schmutz, C., Shokoohi, F. and Warren, P. C., "Performance of Bellcore's Plastic Rechargeable Li-ion Batteries, " Solid State Ion., 86-88(1), 49-54(1996). https://doi.org/10.1016/0167-2738(96)00330-X
  9. Kim, K. M., Kim, J.-C., Park, N.-G., Ryu, K. S. and Chang, S. H., "Capacity and Cycle Performance of a Lithium-ion Polymer Battery Using Commercially Available $LiNiCoO_{2}$," J. Power Sources, 123(1), 69-74(2003). https://doi.org/10.1016/S0378-7753(03)00512-3
  10. Croce, F., Appetecchi, G.B., Persi, L. and Scrosati, B., "Nano composite Polymer Electrolytes for Lithium Batteries," Nature, 394(6692), 456-458(1998). https://doi.org/10.1038/28818
  11. Capiglia, C., Mustarelli, P., Quartarone, E., Tomasi, C. and Mag istris, A., "Effects of Nanoscale $SiO_{2}$ on the Thermal and Trans port Properties of Solvent-Free, Poly(ethylene oxide) (PEO)-Based Polymer Electrolytes," Solid State Ion., 118(1-2), 73-79 (1999). https://doi.org/10.1016/S0167-2738(98)00457-3
  12. Kim, K. M., Ryu, K. S., Kang, S.-G., Chang, S. H. and Chung, I.J., "The Effect of Silica Addition on the Properties of Poly((vinylidene fluoride)-co-hexafluoropropylene)-Based Polymer Electrolytesx," Macromol. Chem. Phys., 202(6), 866-872(2001). https://doi.org/10.1002/1521-3935(20010301)202:6<866::AID-MACP866>3.0.CO;2-C
  13. He, X., Shi, Q., Zhou, X., Wan, C. and Jiang, C., "In Situ Com posite of Nano $SiO_{2}$-P(VDF-HFP) Porous Polymer Electrolytes for Li-ion Batteries," Electrochim. Acta, 51(6), 1069-1075(2005). https://doi.org/10.1016/j.electacta.2005.05.048
  14. Kim, K. M., Park, N.-G., Ryu, K. S. and Chang, S. H., "Physical and Electrochemical Characterizations of Poly(vinylidene fluoride-co-hexafluoropropylene)/ $SiO_{2}$-Based Polymer Electrolytes Prepared by Phase- Inversion Technique," J. Appl. Polym. Sci., 102(1), 140-149 (2006). https://doi.org/10.1002/app.23361
  15. Kim, K. M., Kim, J.-C. and Ryu, K. S., "Physical and Electrochemical Properties of PVdF-HFP/$SiO_{2}$-Based Polymer Electrolytes Prepared by Using Dimethyl Acetamide Solvent and Water Non-Solvent, " Macromol. Chem. Phys., 208(8), 887-895(2007). https://doi.org/10.1002/macp.200600617
  16. Kim, J.-C. and Kim, K. M., "Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/($SiO_{2}$, $TiO_{2}$) Polymer Electrolytes Prepared by Phase Inversion Tech nique," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(1), 131-136(2008).
  17. Jeong, H.-S., Choi, E.-S. and Lee, S.-Y., "Composition Ratio-Dependent Structural Evolution of $SiO_{2}$/Poly(vinylidene fluoride- hexafluoropropylene)-Coated Poly(ethylene terephthalate) Nonwoven Composite Separators for Lithium-ion Batteries," Electrochim. Acta, 86, 317-322(2012). https://doi.org/10.1016/j.electacta.2012.03.126
  18. Jeong, H.-S., Choi, E.-S., Lee, S.-Y. and Kim, J.H., "Evaporation-Induced, Close-Packed Silica Nanoparticle-Embedded Nonwoven Composite Separator Membranes for High-Voltage/High- Rate Lithium-ion Batteries: Advantageous Effect of Highly Percolated, Electrolyte-philic Microporous Architecture," J. Memb. Sci., 415-416, 513-519(2012). https://doi.org/10.1016/j.memsci.2012.05.038
  19. Wang, Y., Travas-Sejdic, J. and Steiner, R., "Polymer Gel Electrolyte Supported with Microporous Pololefin Membranes for Lithium Ion Polymer Battery," Solid State Ion., 148(3-4), 443-449(2002).
  20. Stallworth, P. E., Fontanella, J. J., Wintersgill, M. C., Scheidler, C. D., Immel, J. J., Greenbaum, S. G. and Gozdz, A. S., "NMR, DSC and High Pressure Electrical Conductivity Studies of Liq uid and Hybrid Electrolytes," J. Power Sources, 81-82, 739-747(1999). https://doi.org/10.1016/S0378-7753(99)00144-5
  21. Kim, K. M., Park, N.-G., Ryu, K. S. and Chang, S. H., "Characteristics of PVdF-HFP/$TiO_{2}$ Composite Membrane Electrolytes Prepared by Phase Inversion and Conventional Casting Meth ods," Electrochim. Acta, 51(26), 563-5644(2006).
  22. Kim, K. M., Kim, J.-C. and Ryu, K. S., "Characteristics of PVdF-HFP/$TiO_{2}$ Composite Electrolytes Prepared by a Phase Inversion Technique Using Dimethyl Acetamide Sovent and Water Non-Solvent," Macromol. Mater. Eng., 291(12), 1495-1502(2006). https://doi.org/10.1002/mame.200600299
  23. Christie, A. M., Christie, L. and Vincent, C. A., "Selection of New Kynar-Based Electrolytes for Lithium-ion Batteries," J. Power Sources, 74(1), 77-86(1998). https://doi.org/10.1016/S0378-7753(98)00036-6
  24. Abraham, K. M., Jiang, Z. and Carroll, B., "Highly Conductive PEO-ike Polymer Electrolytes," Chem. Mater., 9(9), 1978-1988 (1997). https://doi.org/10.1021/cm970075a

피인용 문헌

  1. Pore-controlled polymer membrane with Mn (II) ion trapping effect for high-rate performance LiMn2O4 cathode pp.1433-0768, 2019, https://doi.org/10.1007/s10008-018-4153-2
  2. 상분리 조절에 의한 PVDF막의 구조 변화 vol.54, pp.1, 2016, https://doi.org/10.9713/kcer.2016.54.1.57