DOI QR코드

DOI QR Code

Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis

  • Park, Seunghye (Department of Life Science, Hanyang University) ;
  • Lee, Yew (Department of Life Science, Hanyang University) ;
  • Jin, EonSeon (Department of Life Science, Hanyang University)
  • Received : 2013.04.15
  • Accepted : 2013.05.16
  • Published : 2013.06.15

Abstract

Dunaliella salina and Dunaliella bardawil are well known for carotenogenesis, the overproduction of carotenoids, under stress conditions. The effect of high light (HL) and low light (LL) on the growth, morphology, photosynthetic efficiency, and the ${\beta}$-carotene and zeaxanthin production of D. salina CCAP 19/18 and D. bardawil was investigated and compared. Both strains showed similar growth kinetics under LL growth condition, but D. salina CCAP 19/18 was faster. As the light intensity increased, D. salina CCAP 19/18 cells were elongated and D. bardawil cells became larger. Both strains showed decrease of the maximum quantum yield of PSII ($F_v/F_m$) and election transport rate (ETR) under HL growth condition and D. salina CCAP 19/18 was less liable to the light stress. Both strains had about 1.8 and 5 times difference in the $O_2$ evolution rate at LL and HL conditions, respectively. The ${\beta}$-carotene and zeaxanthin production were increased as the light intensity increased in both strains. D. bardawil was more sensitive to light intensity than D. salina CCAP 19/18. The possible application of D. salina CCAP 19/18 as a carotenogenic strain will be discussed.

Keywords

References

  1. Baroli, I. & Melis, A. 1996. Photoinhibition and repair in Dunaiella salina acclimated to different growth irradiances. Planta 198:640-646. https://doi.org/10.1007/BF00262653
  2. Baroli, I. & Niyogi, K. K. 2000. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:1385-1394. https://doi.org/10.1098/rstb.2000.0700
  3. Ben-Amotz, A. & Avron, M. 1983. On the factors which determine massive beta-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant. Physiol. 72:593-597. https://doi.org/10.1104/pp.72.3.593
  4. Ben-Amotz, A., Gressel, J. & Avron, M. 1987. Massive accumulation of phytoene induced by norflurazon in Dunaliella bardawil (Chlorophyceae) prevents recovery from photoinhibition. J. Phycol. 23:176-181.
  5. Ben-Amotz, A., Katz, A. & Avron, M. 1982. Accumulation of ${\beta}$-carotene in halotolerant algae: purification and characterization of ${\beta}$-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18:529-537. https://doi.org/10.1111/j.1529-8817.1982.tb03219.x
  6. Ben-Amotz, A., Rachmilevich, B., Greenberg, S., Sela, M. & Weshler, Z. 1996. Natural ${\beta}$-carotene and whole body irradiation in rats. Radiat. Environ. Biophys. 35:285-288. https://doi.org/10.1007/s004110050041
  7. Chen, H. & Jiang, J. G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 219:251-258. https://doi.org/10.1002/jcp.21715
  8. Chidambara Murthy, K. N., Vanitha, A., Rajesha, J., Mahadeva Swamy, M., Sowmya, P. R. & Ravishankar, G. A. 2005. In vivo antioxidant activity of carotenoids from Dunaliella salina: a green microalga. Life Sci. 76:1381-1390. https://doi.org/10.1016/j.lfs.2004.10.015
  9. Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A. A., Henriques, N. M., Cancela, L. & Varela, J. C. 2008. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar. Biotechnol. (N. Y.) 10:602-611. https://doi.org/10.1007/s10126-008-9100-2
  10. Demmig-Adams, B. & Adams, W. W. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:599-626. https://doi.org/10.1146/annurev.pp.43.060192.003123
  11. Dufosse, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Chi-Exploitadambara Murthy, K. N. & Ravishankar, G. A. 2005. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Technol. 16:389-406. https://doi.org/10.1016/j.tifs.2005.02.006
  12. Edwards, G. & Walker, D. 1983. C3,C4: mechanisms, and cellular environmental regulation of photosynthesis. Blackwell Scientific Publications, Oxford, pp. 40-77.
  13. Frank, H. A., Bautista, J. A., Josue, J. S. & Young, A. J. 2000. Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39:2831-2837. https://doi.org/10.1021/bi9924664
  14. Gomez, P. I. & Gonzalez, M. A. 2005. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol. Res. 38:151-162.
  15. Gordillo, F. J. L., Jimenez, C., Chavarria, J. & Xavier Niell, F. 2001. Photosynthetic acclimation to photon irradiance and its relation to chlorophyll fluorescence and carbon assimilation in the halotolerant green alga Dunaliella viridis. Photosynth. Res. 68:225-235. https://doi.org/10.1023/A:1012969324756
  16. Hadi, M. R., Shariati, M. & Afsharzadeh, S. 2008. Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gav-khooni salt marsh, Iran. Biotechnol. Bioprocess Eng. 13:540-544. https://doi.org/10.1007/s12257-007-0185-7
  17. Hejazi, M. A., Kleinegris, D. & Wijffels, R. H. 2004. Mechanism of extraction of beta-carotene from microalga Dunaliellea salina in two-phase bioreactors. Biotechnol. Bioeng. 88:593-600. https://doi.org/10.1002/bit.20238
  18. Hofstraat, J. W., Peeters, J. C. H., Snel, J. F. H. & Geel, C. 1994. Simple determination of photosynthetic efficiency and photoinhibition of Dunaliella tertiolecta by saturating pulse fluorescence measurements. Mar. Ecol. Prog. Ser. 103:187-196. https://doi.org/10.3354/meps103187
  19. Jin, E. & Melis, A. 2003. Microalgal biotechnology: carotenoid production by the green algae Dunaliella salina. Biotechnol. Bioprocess Eng. 8:331-337. https://doi.org/10.1007/BF02949276
  20. Jin, E. & Polle, J. E. W. 2009. Carotenoid biosynthesis in Dunaliella (Chlorophyta). In Ben-Amotz, A., Polle, J. E. W. & Rao, D. V. S. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. Scientifc Publishers, Enfield, NH, pp. 147-171.
  21. Jin, E. S., Polle, J. E. W., Lee, H. K., Hyun, S. M. & Chang, M. 2003. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol. 13:165-174.
  22. Jin, E. S., Polle, J. E. W. & Melis, A. 2001. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim. Biophys. Acta 1506:244-259. https://doi.org/10.1016/S0005-2728(01)00223-7
  23. Karni, L. & Avron, M. 1988. Ion content of the halotolerant alga Dunaliella salina. Plant Cell Physiol. 29:1311-1314.
  24. Kleinegris, D. M. M., Janssen, M., Brandenburg, W. A. & Wijffels, R. H. 2010. The selectivity of milking of Dunaliella salina. Mar. Biotechnol. 12:14-23. https://doi.org/10.1007/s10126-009-9195-0
  25. Lamers, P. P., Janssen, M., De Vos, R. C., Bino, R. J. & Wijffels, R. H. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162:21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
  26. Lamers, P. P., van de Laak, C. C., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C., Bino, R. J. & Wijffels, R. H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106:638-648. https://doi.org/10.1002/bit.22725
  27. Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A. & Fernandez, E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22:45-52. https://doi.org/10.1016/j.tibtech.2003.11.003
  28. Lers, A., Biener, Y. & Zamir, A. 1990. Photoinduction of massive beta-carotene accumulation by the alga Dunaliella bardawil: kinetics and dependence on gene activation. Plant Physiol. 93:389-395. https://doi.org/10.1104/pp.93.2.389
  29. Marin, N., Morales, F., Lodeiros, C. & Tamigneaux, E. 1998. Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. J. Appl. Phycol. 10:405-411. https://doi.org/10.1023/A:1008017928651
  30. Markovits, A., Gianelli, M. P., Conejeros, R. & Erazo, S. 1993. Strain selection for ${\beta}$-carotene production by Dunaliella. World J. Microbiol. Biotechnol. 9:534-537. https://doi.org/10.1007/BF00386289
  31. Muller, P., Li, X. -P. & Niyogi, K. K. 2001. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 125:1558-1566. https://doi.org/10.1104/pp.125.4.1558
  32. Niyogi, K. K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
  33. Pick, U., Ben-Amotz, A., Karni, L., Seebergts, C. J. & Avron, M. 1986. Partial characterization of K and Ca uptake systems in the halotolerant alga Dunaliella salina. Plant Physiol. 81:875-881. https://doi.org/10.1104/pp.81.3.875
  34. Polle, J. E. W., Tran, D. & Ben-Amotz, A. 2009. History, distribution, and habitats of algae of the genus Dunaliella Teodoresco (Chlorophyceae). In Ben-Amotz, A., Polle, J. E. W. & Rao, D. V. S. (Eds.) The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechonology. Scientifc Publishers, Enfield, NH, pp. 1-13.
  35. Raja, R., Hemaiswarya, S., Balasubramanyam, D. & Rengasamy, R. 2007a. Protective effect of Dunaliella salina (Volvocales, Chlorophyta) against experimentally induced fibrosarcoma on wistar rats. Microbiol. Res. 162:177-184. https://doi.org/10.1016/j.micres.2006.03.009
  36. Raja, R., Hemaiswarya, S. & Rengasamy, R. 2007b. Exploitation of Dunaliella for beta-carotene production. Appl. Microbiol. Biotechnol. 74:517-523. https://doi.org/10.1007/s00253-006-0777-8
  37. Ramel, F., Birtic, S., Cuine, S., Triantaphylides, C., Ravanat, J. -L. & Havaux, M. 2012. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 158:1267-1278. https://doi.org/10.1104/pp.111.182394
  38. Ramos, A. A., Polle, J., Tran, D., Cushman, J. C., Jin, E. S. & Varela, J. C. 2011. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae 26:3-20. https://doi.org/10.4490/algae.2011.26.1.003
  39. Sanchez-Estudillo, L., Freile-Pelegrin, Y., Rivera-Madrid, R., Robledo, D. & Narvaez-Zapata, J. A. 2006. Regulation of two photosynthetic pigment-related genes during stress-induced pigment formation in the green alga, Dunaliella salina. Biotechnol. Lett. 28:787-791. https://doi.org/10.1007/s10529-006-9001-2
  40. Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
  41. Tanumihardjo, S. A. 2002. Factors influencing the conversion of carotenoids to retinol: bioavailability to bioconversion to bioefficacy. Int. J. Vitam. Nutr. Res. 72:40-45. https://doi.org/10.1024/0300-9831.72.1.40
  42. Theodosiou, M., Laudet, V. & Schubert, M. 2010. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci. 67:1423-1445. https://doi.org/10.1007/s00018-010-0268-z
  43. Tornwall, M. E., Virtamo, J., Korhonen, P. A., Virtanen, M. J., Taylor, P. R., Albanes, D. & Huttunen, J. K. 2004. Effect of alpha-tocopherol and beta-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. Eur. Heart J. 25:1171-1178. https://doi.org/10.1016/j.ehj.2004.05.007
  44. Vorst, P., Baard, R. L., Mur, L. R., Korthals, H. J. & van den Ende, H. 1994. Effect of growth arrest on carotene accumulation and photosynthesis in Dunaliella. Microbiology 140:1411-1417. https://doi.org/10.1099/00221287-140-6-1411
  45. Walker, T. L., Collet, C. & Purton, S. 2005. Algal transgenics in the genomic era. J. Phycol. 41:1077-1093. https://doi.org/10.1111/j.1529-8817.2005.00133.x
  46. Yamamoto, H. Y. 1979. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. 51:639-648. https://doi.org/10.1351/pac197951030639
  47. Zhu, Y. H., Jiang, J. G. & Chen, Q. 2008. Characterization of cDNA of lycopene beta-cyclase responsible for a high level of beta-carotene accumulation in Dunaliella salina. Biochem. Cell Biol. 86:285-292. https://doi.org/10.1139/O08-012

Cited by

  1. Growth Rate Estimation of algae in Raceway Ponds: A novel Approach vol.47, pp.3, 2014, https://doi.org/10.3182/20140824-6-ZA-1003.02408
  2. Identification of the carbonic anhydrases from the unicellular green alga Dunaliella salina strain CCAP 19/18 vol.19, 2016, https://doi.org/10.1016/j.algal.2016.07.010
  3. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30 vol.106, 2016, https://doi.org/10.1016/j.plaphy.2016.05.021
  4. Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara vol.69, 2014, https://doi.org/10.1016/j.biombioe.2014.07.023
  5. Cloning and differential expression analysis of geranylgeranyl diphosphate synthase gene from Dunaliella parva vol.28, pp.4, 2016, https://doi.org/10.1007/s10811-015-0767-2
  6. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara vol.151, 2014, https://doi.org/10.1016/j.biortech.2013.10.073
  7. Homologous sense and antisense expression of a gene in Dunaliella tertiolecta vol.242, pp.4, 2015, https://doi.org/10.1007/s00425-015-2369-2
  8. Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions vol.46, pp.8, 2016, https://doi.org/10.1080/10826068.2015.1135465
  9. The Effect of Light Stress and Other Culture Conditions on Photoinhibition and Growth of Dunaliella tertiolecta vol.178, pp.2, 2016, https://doi.org/10.1007/s12010-015-1882-x
  10. Effects of beneficial bacteria on biomass, photosynthetic parameters and cell composition of the microalga Muriellopsis sp. adapted to grow in seawater vol.51, pp.9, 2013, https://doi.org/10.1111/are.14711
  11. 신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구 vol.48, pp.3, 2013, https://doi.org/10.4014/mbl.1912.12020
  12. Effects of different light regimes on Dunaliella salina growth and β-carotene accumulation vol.52, pp.None, 2013, https://doi.org/10.1016/j.algal.2020.102111
  13. Influence of stress factors on growth and pigment production in three Dunaliella species cultivated outdoors in flat-plate photobioreactors vol.155, pp.1, 2013, https://doi.org/10.1080/11263504.2020.1727985
  14. Formation of a novel coating material containing lutein and zeaxanthin via a Maillard reaction between bovine serum albumin and fucoidan vol.343, pp.None, 2013, https://doi.org/10.1016/j.foodchem.2020.128437
  15. The Effect of Various Salinities and Light Intensities on the Growth Performance of Five Locally Isolated Microalgae [Amphidinium carterae, Nephroselmis sp., Tetraselmis sp. (var. red pappas), Asterom vol.9, pp.11, 2013, https://doi.org/10.3390/jmse9111275
  16. Light supply and mineral nutrition conditions as optimization factors for outdoor mass culture of carotenogenic microalga Dunaliella salina vol.52, pp.12, 2021, https://doi.org/10.1111/are.15471