DOI QR코드

DOI QR Code

MALDI-TOF Analysis of Polyhexamethylene Guanidine (PHMG) Oligomers Used as a Commercial Antibacterial Humidifier Disinfectant

  • Hwang, Hyo Jin (Department of Chemistry, Sogang University) ;
  • Nam, Jungjoo (Department of Chemistry, Sogang University) ;
  • Yang, Sung Ik (Department of Applied Chemistry, Kyung Hee University) ;
  • Kwon, Jung-Hwan (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Oh, Han Bin (Department of Chemistry, Sogang University)
  • Received : 2013.02.27
  • Accepted : 2013.03.14
  • Published : 2013.06.20

Abstract

Polyhexamethylene guanidine (PHMG) polymers used as an active ingredient in an antibacterial humidifier disinfectant were reported to cause harm to the human health when inhaled, although physical contact with this material was known to present low toxicity to humans. It is therefore necessary to develop an optimal analysis method which enables detection and analysis of PHMG polymers. MALDI-TOF investigations of PHMG are performed with a variety of matrices, and it is found that CHCA and 2,5-DHB are excellent matrices which well reflects the polymer population even at high mass. For the provided PHMG sample, the number-average ($M_n$) and weight-average ($M_w$) molecular masses were determined to be 744.8 and 810.7, respectively, when the CHCA was used as a matrix. The rank of the matrices in terms of averaged molecular weight was CHCA ~2,5-DHB > 5-NSA > DHAP, THAP > ATT > IAA ~ super-DHB ~ HABA. In addition, PSD of the PHMG oligomer ions exhibited a few unique fragmenation characteristics. The formation of a- and c-type fragments was the major fragmentation pathway, and the 25-Da loss peaks generally accompanied a- and c-type fragments.

Keywords

References

  1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64. https://doi.org/10.1126/science.2675315
  2. Kebarle, P.; Verkerk, U. H. Mass Spectrom. Rev. 2009, 28, 898. https://doi.org/10.1002/mas.20247
  3. Park, S. J.; Jo, K. B.; Oh, H. B. Analyst 2011, 136, 3739. https://doi.org/10.1039/c1an15376e
  4. Karas, M.; Bachmann, D.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Process 1987, 78, 53. https://doi.org/10.1016/0168-1176(87)87041-6
  5. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151. https://doi.org/10.1002/rcm.1290020802
  6. Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Anal. Chem. 1996, 68, 850. https://doi.org/10.1021/ac950914h
  7. Matsui, N. M.; Smith, D. M.; Clauser, K. R.; Fichmann, J.; Andrews, L. E.; Sullivan, C. M.; Burlingame, A. L.; Epstein, L. B. Electrophoresis 1997, 18, 409. https://doi.org/10.1002/elps.1150180315
  8. Mann, M.; Hendrickson, R. C.; Pandey, A. Annu. Rev. Biochem. 2001, 70, 437. https://doi.org/10.1146/annurev.biochem.70.1.437
  9. Reyzer, M. L.; Caprioli, R. M. Current Opinion in Chemical Biology 2007, 11, 29. https://doi.org/10.1016/j.cbpa.2006.11.035
  10. Bahr, U.; Aygun, H.; Karas, M. Anal. Chem. 2009, 81, 3173-3179. DOI: 10.1021/ac900100x
  11. Kirpekar, F.; Nordhoff, E.; Larsen, L. K.; Kristiansen, K.; Roepstorff, P.; Hillenkamp, F. Nucleic Acids Res. 1998, 26, 2554. https://doi.org/10.1093/nar/26.11.2554
  12. Montaudo, G.; Samperi, F.; Montaudo, M. S. Prog. Polym. Sci. 2006, 31, 277. https://doi.org/10.1016/j.progpolymsci.2005.12.001
  13. So, H. R.; Lee, J. H.; Han, S. Y.; Oh, H. B. J. Am. Soc. Mass Spectrum. 2012, 23, 1821. https://doi.org/10.1007/s13361-012-0445-4
  14. Jang, S.; Yang, E. K.; Jin, S. I.; Cho, Y. D.; Choe, E. K.; Park, C. R. Bull. Korean Chem. Soc. 2012, 33, 833. https://doi.org/10.5012/bkcs.2012.33.3.833
  15. Cohen, L. H.; Gusev, A. I. Anal. Bioanal. Chem. 2002, 373, 571. https://doi.org/10.1007/s00216-002-1321-z
  16. Kim, J.; Han, S. P.; Kim, J. K.; Kim, Y. J. Bull. Korean Chem. Soc. 2011, 32, 915. https://doi.org/10.5012/bkcs.2011.32.3.915
  17. Chou, J. Z.; Kreek, M. J.; Chait, B. T. J. Am. Soc. Mass Spectrom. 1994, 5, 10. https://doi.org/10.1016/1044-0305(94)85078-X
  18. Gusev, A. I.; Wilkinson, W. R.; Proctor, A.; Hercules, D. M. Anal. Chem. 1995, 67, 1034. https://doi.org/10.1021/ac00102a003
  19. Kjellstrom, S.; Jensen, O. N. Anal. Chem. 2004, 76, 5109. https://doi.org/10.1021/ac0400257
  20. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299. https://doi.org/10.1021/ac00171a028
  21. Vorm, O.; Roepstorff, P.; Mann, M. Anal. Chem. 1994, 66, 3281. https://doi.org/10.1021/ac00091a044
  22. Cohen, S. L.; Chait, B. T. Anal. Chem. 1996, 68, 31. https://doi.org/10.1021/ac9507956
  23. Karas, M.; Kruger, R. Chem. Rev. 2003, 103, 427. https://doi.org/10.1021/cr010376a
  24. Chang, W. C.; Huang, L. C. L.; Wang, Y. S.; Peng, W. P.; Chang, H. C.; Hsu, N. Y.; Yang, W. B.; Chen, C. H. Anal. Chim. Acta 2007, 582, 1. https://doi.org/10.1016/j.aca.2006.08.062
  25. Ehring, H.; Karas, M.; Hillenkamp, F. Org. Mass Spectrom. 1992, 27, 427.
  26. Kim, S. H.; Park, S. H.; Song, J. Y.; Han, S. Y. Mass Spectrom. Lett. 2012, 3, 18. https://doi.org/10.5478/MSL.2012.3.1.018
  27. Nielen, M. W. F. Mass Spectrom. Rev. 1999, 18, 309. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<309::AID-MAS2>3.0.CO;2-L
  28. Guttman, C. M.; Wetzel, S. J.; Blair, W. R.; Fanconi, B. M.; Girard, J. E.; Goldschmidt, R. R.; Wallace, W. E.; VanderHart, D. L. Anal. Chem. 2001, 73, 1252. https://doi.org/10.1021/ac001011d
  29. Korea Center for Disease Control and Prevention. Interim report of epidemiological investigation on lung injury with unknown cause in Korea. Public Health Weekly Report KCDC 2011, 4, 817-832 (Korean).
  30. Lee, J. H.; Kim, Y. H.; Kwon, J. H. Environ. Sci. Technol. 2012, 46, 2498. https://doi.org/10.1021/es300567j
  31. Ministry of Health and Welfare Press release. http://english.mw.go.kr/ front_eng/al/sal020vw.jsp?PAR_MENU_ID=1002&MENU_ID= 100203&page=1&CONT_SEQ=260454&SEARCHKEY=&SEA RCHVALUE=(accessed Feb 9, 2013).
  32. Wei, D.; Ma, Q.; Guan, Y.; Hu, F.; Zheng, A.; Zhang, X.; Teng, Z.; Jiang, H. Mater. Sci. Eng. C 2009, 29, 1776. DOI: 10.1016/j.msec. 2009.02.005
  33. Kim, B. R.; Anderson, J. E.; Mueller, S. A.; Gaines, W. A.; Kendall, A. M. Water Res. 2002, 36, 4433. https://doi.org/10.1016/S0043-1354(02)00188-4
  34. Lee, W. R.; Tobias, K. M.; Bemis, D. A.; Rohrbach, B. W. Vet. Surg. 2004, 33, 404. https://doi.org/10.1111/j.1532-950X.2004.04059.x
  35. Woodcock, P. M. in Payne, K. R., Ed., Industrial Biocides; John Wiley & Sons: Chichester, 1988.
  36. Altert, M.; Feiertag, P.; Hayn, G.; Saf, R.; Hönig, H. Biomacromolecules 2003, 4, 1811. https://doi.org/10.1021/bm0342180
  37. Feiertag, P.; Albert, M.; Ecker-Eckhofen, E. M.; Hayn, G.; Honig, H.; Oberwalder, H. W.; Saf, R.; Schmidt, A.; Oskar, S.; Topchiev, D. Macromol. Rapid Commun. 2003, 24, 567. https://doi.org/10.1002/marc.200390085
  38. Karas, M.; Ehring, H.; Nordhoff, E.; Stahl, B.; Strupat, K.; Hillenkamp, F.; Grehl, M.; Krebs, B. Org. Mass Spectrom. 1993, 28, 1476. https://doi.org/10.1002/oms.1210281219
  39. Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. Anal. Bioanal. Chem. 2003, 376, 952. https://doi.org/10.1007/s00216-003-2057-0
  40. O'Malley, L. P.; Hassan, K. Z.; Brittan, H.; Johnson, N.; Collins, A. N. J. Appl. Polym. Sci. 2006, 102, 4928. https://doi.org/10.1002/app.24915
  41. Hanton, S. D.; Owens, K. G. Proc. 46th ASMS Conf. Mass Spectrom. Allied Topics, Orlando, FL, USA, 1998, 1185.
  42. Jackson, A. T.; Scrivens, J. H.; Williams, J. P.; Baker, E. S.; Gidden, J.; Bowers, M. T. Int. J. Mass Spectrom. 2004, 238, 287. https://doi.org/10.1016/j.ijms.2004.09.025
  43. Han, S. Y.; Lee, S. Y.; Oh, H. B. Bull. Korean Chem. Soc. 2005, 26, 740. https://doi.org/10.5012/bkcs.2005.26.5.740

Cited by

  1. Sampling Polyhexamethylene Guanidine Aerosols Using Eosin Y-coated Glass Beads vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10345
  2. Determination of polyhexamethyleneguanidine hydrochloride using gold nanoparticles and polyurethane foam vol.70, pp.1, 2015, https://doi.org/10.3103/S0027131415010022
  3. Distribution of Health Problems Associated with Humidifier Disinfectant by Year vol.42, pp.6, 2016, https://doi.org/10.5668/JEHS.2016.42.6.365
  4. Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts vol.75, pp.7, 2017, https://doi.org/10.1080/00016357.2017.1350993
  5. Antimicrobial Activity of Polyhexamethylene Guanidine Derivatives Introduced into Polycaprolactone pp.1572-8900, 2018, https://doi.org/10.1007/s10924-017-0974-9
  6. Fluorescent determination of poly(hexamethylene guanidine) via the aggregates it forms with quantum dots and magnetic nanoparticles vol.183, pp.3, 2013, https://doi.org/10.1007/s00604-015-1720-4
  7. Properties of Polyhexamethylene Guanidine (PHMG) Associated with Fatal Lung Injury in Korea vol.25, pp.14, 2013, https://doi.org/10.3390/molecules25143301