Study on the Physical and Rheological Properties of Nylon66/MWCNT Composites

나일론66/MWCNT 복합체 물성 및 유변학적 특성 연구

  • Kim, Do Eui (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 김도의 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Published : 2013.04.10

Abstract

Nylon66/multi-walled carbon nano tube (MWCNT) composites were fabricated by twin screw extruder. The contents of MWCNT were 1, 3, 5, and 7 wt%. Thermal properties, dispersion, rheological and impact properties were measured by DSC, TGA, X-ray diffraction (XRD), SEM, Dynamic rheometer, and Izod impact tester. The effect of MWCNT on the non-isothermal crystallization of Nylon66 was confirmed by DSC. The complex viscosity at low frequency and the shear thinning tendency of the composites increased with MWCNT content. An increase in the elasticity was confirmed from the decrease in the slop of G'-G" plot. Izod impact strengths of the composites were analyzed as a measure of mechanical properties, which indicated that the composites exhibit a 60% enhancement for the impact strength when 3 wt% MWCNT was added. The dispersion of MWCNT within Nylon66/MWCNT composites was also checked by SEM.

나일론66에 다중벽 탄소나노튜브(multi-walled carbon nano tube, MWCNT)를 1, 3, 5, 7 wt% 첨가하여 이축압출기(twin screw extruder)를 이용하여 나일론66/MWCNT 복합체를 제조하였다. MWCNT의 함량에 따른 열적특성, 분산성, 유변 학적 특성 및 충격특성을 DSC, TGA, X선 회절 분석기(XRD), 전자주사현미경(SEM), 동적유변측정기(ARES) 그리고 Izod 시험기를 이용하여 분석하였다. 나일론66에 MWCNT를 첨가할 때 나일론66의 비등온결정화에 영향을 주는 것을 DSC를 이용하여 확인하였다. 나일론66/MWCNT 복합체의 경우 낮은 전단속도 영역에서 복합점도 및 복합점도에 대 한 주파수 의존성을 나타내는 전단박하(shear thinning)가 증가하였으며, MWCNT 함량이 증가할수록 증가폭이 크게 나타났다. 또한 복합체의 G'-G" plot의 기울기가 감소하는 현상으로부터 탄성특성 증가를 확인하였다. 기계적 물성으 로 Izod 충격강도를 분석하였고, 3 wt% MWCNT가 첨가될 때 60%의 충격강도 개선을 확인하였다. SEM을 이용하여 나일론66내의 MWCNT의 분산성을 확인하였다.

Keywords

References

  1. J. Lecomte. M. Lever, J. Boudt, A. Tassy, and R. Park, Conference Publications, 2, 515 (1989).
  2. T. Knurek and R. Shoureshi, Journals & Magazines, 16, 72 (1996).
  3. J. J Park, Transactions on Electrical and Electronic Materials, 20, 9 (2007).
  4. J. Chen, W. Wu, C. Chen, and S. He, J. of Appl. Poly. Sci., 115, 588 (2010). https://doi.org/10.1002/app.30989
  5. J. E. An, G. W. Jeon, and Y. G. Jeong, Fibers & Polymers, 13, 507 (2012). https://doi.org/10.1007/s12221-012-0507-z
  6. K. T. Kim and W. H. Jo, Cabron, 49, 819 (2011).
  7. R. K. Ayyer and A. I. Leonov, Rheol Acta, 43, 283 (2004). https://doi.org/10.1007/s00397-003-0343-6
  8. G. Xu, G. Chen, Y. Ma, Y. Ke, and M. Han, J. of Appl. Poly. Sci., 108, 1501 (2008). https://doi.org/10.1002/app.27750
  9. L. Wang, Y. B. Yan, Q. Q. Yang, J. Yu, and Z. X. Guo, J. Mater. Sci., 47, 1702 (2012). https://doi.org/10.1007/s10853-011-5949-y
  10. D. Yan and G. Yang, Mater. Letters, 63, 298 (2009). https://doi.org/10.1016/j.matlet.2008.10.013
  11. S. Yu, J. Zhao, G. Chen, Y. K. Juay, and M. S. Yong, J. of Mater. Proc. Techn., 192, 410 (2007).
  12. C. Caamano, B. Grady, and D. E. Resasco, Carbon, 50, 3694 (2012). https://doi.org/10.1016/j.carbon.2012.03.043
  13. B. Schartel, P. Potschke, U. Knoll, and M. Abdel-Goad, Euro. Polym. J., 41, 1061 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.023
  14. L. Zonder, A. Ophir, S. Kenig, and S. McCarthy, Polymer, 52, 5085 (2011). https://doi.org/10.1016/j.polymer.2011.08.048