Synthesis of Conjugated Linoleic Acid Methylester using Heterogeneous Catalysts

불균일계 촉매에 의한 공액 리놀레산 메틸에스테르의 합성

  • Yuk, Jeong-Suk (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Lee, Sang-Jun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Kim, Nam-Kyun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Kim, Young-Wun (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT) ;
  • Yoon, Byeong-Tae (Industrial Bio-based Materials Research Group, Integrated Chemistry Research Division, KRICT)
  • 육정숙 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 이상준 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김남균 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 윤병태 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터)
  • Published : 2013.06.10

Abstract

Conjugated linoleic acid methylester was synthesized through isomerization of linoleic acid methylester by using heterogeneous catalysts. As for heterogeneous catalysts, Ni supported zeolite type catalysts were used. H zoelite Y (HY) were ion exchanged with KCl aqueous solution to synthesize K zeolite Y (KY), and with impregnation method, Ni supported zeolite catalysts were synthesized. Catalysts were used after pre-treatment by using hydrogen. HY catalysts showed a high conversion at low temperatures; but a low selectivity for conjugation reaction. KY catalysts showed a low conversion at low temperatures; but a similar conversion with HY catalysts at high temperatures while a high selectivity at low temperatures. As a result, 4 wt% Ni/KY720 recorded the high conjugation yield of 63.4% at 220.

공액 리놀레산 메틸에스테르는 불균일계 촉매인 니켈 담지 제올라이트계 촉매를 이용하여 리놀레산 메틸에스테르의 이성질화를 통해 합성할 수 있다. 니켈 담지 제올라이트계 촉매는 HY 제올라이트로부터 KCl 수용액을 이용해 이온교환하여 KY 제올라이트를 합성한 뒤 함침법을 통해 니켈을 담지하여 합성하였다. 합성된 촉매는 수소를 이용하여 전처리하여 공액화 반응에 사용하였다. 그 결과 낮은 온도에서 HY 촉매는 높은 전환율을 나타내었지만 공액화 반응에 대해 낮은 선택도를 나타내었다. KY 촉매는 낮은 온도에서 상대적으로 낮은 전환율을 나타내었으나 높은 온도에서 HY 촉매와 유사한 전환율을 보였으며, 낮은 온도에서도 공액화 반응에 대해 높은 선택도를 나타내었다. 결과적으로 반응 온도 $220^{\circ}C$에서 4 wt% Ni/KY720을 이용하여 가장 높은 63.4%의 수율을 얻었다.

Keywords

References

  1. P. Tolvanen, P. Maki-Arvela, N. Kumar, K. Eranen, R. Sjoholm, J. Hemming, B. Holmbom, T. Salmi, and D. Y. Murzin, Appl. Catal. A; Gen, 330, 1 (2007). https://doi.org/10.1016/j.apcata.2007.06.012
  2. R. M. Koster, M. Bogert, B. de Leeuw, E. K. Poels, and A. Bliek, J. Mol. Catal. A; Chem., 134, 159 (1998). https://doi.org/10.1016/S1381-1169(98)00032-6
  3. P. R. O'Quinn, J. L. Nelssen, R. D. Goodband, and M. D. Tokach, Anim. Health Res. Rev., 1, 35 (2000). https://doi.org/10.1017/S1466252300000049
  4. A. Philippaerts, S. Goossens, P. A. Jacobs, and B. F. Sels, Chem. Sus. Chem., 4, 684 (2011). https://doi.org/10.1002/cssc.201100086
  5. A. Philippaerts, S. Paulussen, S. Turner, O. I. Lebedev, G. Van Tendeloo, H. Poelman, M. Bulut, F. De Clippel, P. Smeets, B. Sels, and P. Jacobs, J. Catal., 270, 172 (2010). https://doi.org/10.1016/j.jcat.2009.12.022
  6. N. Chorfa, S. Hamoudi, and K. Belkacemi, Appl. Catal. A; Gen., 387, 75 (2010). https://doi.org/10.1016/j.apcata.2010.08.006
  7. A. Bernas, N. Kumar, P. Maki-Arvela, B. Holmbom, T. Salmi, and D. Y. Murzin, Org. Process Res. Dev., 8, 341 (2004). https://doi.org/10.1021/op034127v
  8. T. Yang and T. Liu, J. Agric. Food Chem., 52, 5079 (2004). https://doi.org/10.1021/jf0401017
  9. A. Philippaerts, S. Goossens, W. Vermandel, M. Tromp, S. Turner, J. Geboers, G. Van Tendeloo, P. A. Jacobs, and B. F. Sels, Chem. Sus. Chem., 4, 757 (2011). https://doi.org/10.1002/cssc.201100015
  10. A. Bernas and D. Y. Murzin, Chem. Eng. J., 115, 13 (2005). https://doi.org/10.1016/j.cej.2005.09.001
  11. M. Kreich and P. Claus, Angew. Chem. Int. Ed., 44, 7800 (2005). https://doi.org/10.1002/anie.200501852
  12. P. Pakdeechanuan, K. Intarapichet, L. N. Fernando, and I. U. Grun, J. Agric. Food Chem., 53, 923 (2005). https://doi.org/10.1021/jf048957z
  13. A. Bernas, P. Maki-Arvela, N. Kumar, B. Holmbom, T. Salmi, and D. Y. Murzin, Ind. Eng. Chem. Res., 42, 718 (2003). https://doi.org/10.1021/ie020642q
  14. P. Pertici, V. Ballantini, S. Catalano, A. Giuntoli, C. Malanga, and G. Vitulli, J. Mol. Catal. A: Chem., 144, 7 (1999). https://doi.org/10.1016/S1381-1169(98)00345-8
  15. S. Narasimhan, D. Mukesh, R. Gadkarl, and V. M. Deshpande, Ind. Eng. Chem. Prod. Res. Dev., 24, 324 (1985). https://doi.org/10.1021/i300018a029
  16. C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice, 2nd ed, McGraw-Hill (1993).
  17. D. Mukesh, C. S. Narasimhan, V. M. Deshpande, and K. Ramnarayan, Ind. Eng. Chem. Res., 27, 409 (1988). https://doi.org/10.1021/ie00075a008
  18. A. Bernas, N. Kumar, P. Maki-Arvela, N. V. Kul'kova, B. Holmbom, T. Salmi, and D. Y. Murzin, Appl. Catal. A: Gen., 245, 257 (2003). https://doi.org/10.1016/S0926-860X(02)00646-4
  19. A. Bernas, P. Laukkanen, N. Kumar, P. Mki-Arvela, J. Vyrynen, E. Laine, B. Holmbom, T. Salmi, and D. Y. Murzin, J. Catal., 210, 354 (2002). https://doi.org/10.1006/jcat.2002.3690
  20. Q. Gu, F. David, F. Lynen, P. Vanormelingen, W. Vyverman, K. Rumpel, G. Xu, and P. Sandra, J. Chromatogr. A., 1218, 3056 (2011). https://doi.org/10.1016/j.chroma.2011.03.011
  21. H. Robson, Verified Syntheses of Zeolitic Materials, 118 Elsevier, New York (2001).
  22. A. M. G. Pedrosa, M. J. B. Souza, D. M. A. Melo, and A. S. Araujo, Mater. Res. Bull., 41, 1105 (2006). https://doi.org/10.1016/j.materresbull.2005.11.010