Effects of Annealing Temperature on Thermal Properties of Glycidyl Azide Polyol-based Energetic Thermoplastic Polyurethane

글리시딜아자이드계 열가소성 폴리우레탄의 열적특성에 대한 열처리 조건의 영향

  • Kim, Jeong Su (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kim, Du Ki (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kweon, Jeong Ohk (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Lee, Jae Myung (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Noh, Si Tae (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University) ;
  • Kim, Sun Young (Research & Development Department, Hanwha Corporation Yeosu Plant)
  • Published : 2013.06.10

Abstract

In this study, we investigated effects of thermal annealing on the thermal properties and microphase separation behaviors of glycidyl azide-based thermoplastic polyurethane elastomers (ETPE). The GAP-based ETPEs were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and gel permeation chromatography (GPC). The effects of annealing temperature conditions ($80{\sim}130^{\circ}C$, 1 h or 24 h) on the properties of the ETPEs were investigated. The intensity of azide group absorption peak of ATR-FTIR spectra and the solubility of ETPE for methylene chloride and dimethylformamide solvent decreased after the annealing at $130^{\circ}C$ for 1 h and at $105^{\circ}C$ for 24 h. With increasing the annealing temperature from $80^{\circ}C$ to $110^{\circ}C$, the high temperature rubbery plateau region of storage modulus curves from DMA thermogram for GAP-based ETPEs was extended to the higher temperature.

본 연구는 glycidyl azide polymer (GAP)계 에너지 함유 열가소성 폴리우레탄 탄성체(energetic thermoplastic polyurethane elastomers, ETPE)를 합성한 후 탄성체의 필름 제조 공정의 열처리 조건이 물성에 미치는 영향에 대하여 고찰하였다. GAP계 ETPE는 ATR-FTIR, DSC, 그리고 DMA를 이용하여 분석하였다. GAP계 ETPE의 물성에 대한 열처리 조건의 영향은 $80{\sim}130^{\circ}C$의 온도 범위에서 1 h과 24 h의 열처리 시간을 나누어 연구를 진행하였다. 1 h의 열처리 조건에서는 $130^{\circ}C$의 열처리 온도에서 그리고 24 h의 열처리 과정에서는 $105^{\circ}C$ 이상의 온도조건에서 아자이드기의 흡수대인 $2090cm^{-1}$ 피크의 감소가 관찰되었으며, methylene chloride와 dimethylformamide 용매에 대한 필름의 용해도 또한 감소하였다. 이것은 $100^{\circ}C$ 이상 열처리 온도조건이 아자이드기의 가교 부반응을 유도할 수 있음을 나타낸다. 또한 열처리 온도가 $80^{\circ}C$에서 $110^{\circ}C$로 증가함에 따라 온도변화에 따른 저장 탄성률 곡선의 고온 고무평탄 영역이 더 높은 온도까지 확장되었으며, 이 또한 가교반응의 결과이다.

Keywords

References

  1. G. Ampleman, A. Marois, and S. Brochu, Recent Res. Developments Macromolecules Res., 3, 355 (1998).
  2. Y. M. Mohan and K. M. Raju, Intern. J. Polym. Anal. Charact., 9, 289 (2005).
  3. G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, "Thermoplastic Elastomers", Hanser/Gardner Publications, Inc., Cincinnati (1996).
  4. S. Pisharath and H. G. Ang, Polymer Degradation and Stability, 92, 1365 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
  5. R. W. Seymour and S. L. Cooper, Macromolecules, 16, 48 (1973).
  6. J. W. C. Van Bogart, D. A. Bluemke, and S. L. Cooper, Polymer, 22, 1428 (1981). https://doi.org/10.1016/0032-3861(81)90250-0
  7. P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000). https://doi.org/10.1021/ma991741r
  8. J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
  9. L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
  10. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
  11. D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. Mccarthy, and G. M. Renwick, J. Appl. Polym. Sci., 64, 803 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<803::AID-APP20>3.0.CO;2-T
  12. D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. Mccarthy, and P. A. Gunatillake, J. Appl. Polym. Sci., 62, 1377 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961128)62:9<1377::AID-APP7>3.0.CO;2-E
  13. M. Kawamoto, M. F. Diniz, v. L. Lourenco, M. F. Takahashi, T. Keicher, H. Krause, K. Menke, and P. B. Kempa, J. Aerosp. Techonol. Manag., 2, 307 (2010). https://doi.org/10.5028/jatm.2010.02037910
  14. E. diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Propell. Explos. Pyrot., 28, 210 (2003). https://doi.org/10.1002/prep.200300007
  15. A. K. Sikder and S. Reddy, Propell. Explos. Pyrot., 38, 14 (2013). https://doi.org/10.1002/prep.201200002
  16. B. Gaur, V. L. Choudhary, and I. K. Varma, J. Macromol. Sci. Poly. Rev., C43, 505 (2003).
  17. H. Arisawa and T. B. Brill, Combust. Flame, 112, 533 (1998). https://doi.org/10.1016/S0010-2180(97)00162-4
  18. H. Fazlioglu and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 63, 327 (2002). https://doi.org/10.1016/S0165-2370(01)00162-0
  19. M. S. Eroglu and O. Guven, J. Appl. Polym. Sci., 61, 201 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960711)61:2<201::AID-APP1>3.0.CO;2-T
  20. T. Wang, S. Li, B. Yang, C. Huang, and Y. Li, J. Phys. Chem. Part B, 111, 2449 (2007). https://doi.org/10.1021/jp066375+
  21. P. kubisa and S. Penczek, Prog. Polym. Sci., 24, 1409 (1999). https://doi.org/10.1016/S0079-6700(99)00028-3
  22. A. Tsukamoto and O. Vogl, Prog. Polym. Sci., 3, 199 (1971). https://doi.org/10.1016/0079-6700(71)90005-0
  23. M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Propul. Power, 8, 560 (1992). https://doi.org/10.2514/3.23514
  24. H. S. Kim, J. S. You, J. O. Kweon, J. S. Kim, D. S. Kim, S. T. Noh, Y. O. Chang, D. K. Kim, and S. G. Kweon, Appl. Chem. Eng., 21, 377 (2010).
  25. J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986). https://doi.org/10.1021/ma00157a039
  26. L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986). https://doi.org/10.1021/ma00157a038
  27. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992). https://doi.org/10.1021/ma00049a017
  28. S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, Polymer, 48, 4793 (2007). https://doi.org/10.1016/j.polymer.2007.06.006
  29. J. T. Garrett, R. Xu, J. Cho, and J. Runt, polymer, 44, 2711 (2003). https://doi.org/10.1016/S0032-3861(03)00165-4