The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs

LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성

  • Kim, Yesol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Do Young (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Jung, Min-Jung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Kim, Min Il (GTsien) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 김예솔 (충남대학교 공과대학 정밀응용화학과) ;
  • 김도영 (충남대학교 공과대학 정밀응용화학과) ;
  • 정민정 (충남대학교 공과대학 정밀응용화학과) ;
  • 김민일 (지티사이언) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Published : 2013.06.10

Abstract

In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

본 연구에서는 휘발성 유기화합물 제거특성을 향상시키고자 졸겔법 및 urea의 고상 열처리법을 이용하여 질소가 도핑된 $TiO_2$ ($N-TiO_2$) 코팅 활성탄소 펠렛을 제조하였다. 또한 이 활성탄소 펠렛의 가시광 활성능 평가를 위하여 light emitting diods (LED)를 조사하였고, gas chromatography를 이용하여 벤젠가스 제거능을 측정하였다. Titanium tetra isopropoxide 함량이 증가함에 따라 활성탄소 펠렛 표면에 $TiO_2$ 코팅량이 증가되고, 비표면적이 감소됨을 SEM 및 BET 결과를 통해 각각 확인하였다. 벤젠가스 제거 결과, ACP10의 벤젠가스에 대한 파과점 도달시간이 ACP에 비하여 약 2배정도 증가되었다. 이는 활성탄소 펠렛의 표면에 코팅된 $N-TiO_2$가 LED 광원 조사 하에서 더 효과적으로 벤젠가스를 분해하였기 때문으로 판단된다.

Keywords

References

  1. S. C. Jung and S. H. Lee, J. Korean Soc. Environ. Eng., 34, 397 (2012). https://doi.org/10.4491/KSEE.2012.34.6.397
  2. A. Anfruns, M. J. Martin, and M. A. M. Moran, Chem. Eng. J., 166, 1022 (2011). https://doi.org/10.1016/j.cej.2010.11.095
  3. K. C. Jung and S. C. Hong, Appl. Chem. Eng., 14, 671 (2003).
  4. H. H. An, J. Korean Inst. Gas, 14, 35 (2010).
  5. H. S. Kim and Y. S. Park, J. Korean Soc. Environ. Eng., 25, 977 (2003).
  6. K. J. Kim, C. S. Kang, Y. J. You, M. C. Chung, M. W. Woo, W. J. Jeong, N. C. Park, and H. G. Ahn, Catal. Today, 111, 223 (2006). https://doi.org/10.1016/j.cattod.2005.10.030
  7. L. Li, S. Liu, and J. Liu, J. Hazard. Mater., 192, 683 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
  8. S. K. Park and H. C. Kim, Appl. Chem. Eng., 21, 680 (2010).
  9. K. J. Woo, S. D. Kim, and S. H. Lee, Korean Chem. Eng. Res., 45, 277 (2007).
  10. C. H. Ao and S. C. Lee, J. Photoch. Photobio. A, 161, 131 (2004). https://doi.org/10.1016/S1010-6030(03)00276-4
  11. D. S. Selishchev, P. A. Kolinko, and D. V. Kozlov, J. Photoch. Photobio. A, 229, 11 (2012). https://doi.org/10.1016/j.jphotochem.2011.12.006
  12. M. S. Choi, S. Han, S. C. Jang, and Y. W. Jung, J. Korean Soc. Atmos. Environ., 25, 211 (2009). https://doi.org/10.5572/KOSAE.2009.25.3.211
  13. B. C. Bai, J. S. Im, J. G. Kim, and Y. S. Lee, Appl. Chem. Eng., 21, 29 (2010).
  14. Y. G. Kang, K. S. Shin, S. H. Ahn, and H. S. Hahm, J. Korean Oil Chem. Soc., 29, 466 (2012).
  15. M. J. Choi, K. J. Chae, H. W. Yu, K. Y. Kim, A. Jang, and I. S. Kim, J. Korean Soc. Environ. Eng., 32, 907 (2011).
  16. C. Shifu, L. Xuqiang, L. Yunzhang, and C. Gengyu, Appl. Surf. Sci., 253, 3077 (2007). https://doi.org/10.1016/j.apsusc.2006.06.058
  17. J. Kim, Korean Chem. Eng. Res., 42, 224 (2004).
  18. P. K. Khanna, N. Singh, and S. Charan, Mater. Lett., 61, 4725 (2007). https://doi.org/10.1016/j.matlet.2007.03.064
  19. V. Iliev, D. Tomova, and S. Rakovsky, Desalination, 260, 101 (2010). https://doi.org/10.1016/j.desal.2010.04.058
  20. Y. Kim, B. C. Bai, and Y. S. Lee, Appl. Chem. Eng., 23, 308 (2012).
  21. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Appl. Chem. Eng., 22, 405 (2011).
  22. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interf. Sci., 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  23. S. K. Ryu, S. Y. Eom, K. S. Yim, and E. D. D., Korean Chem. Eng. Res., 42, 288 (2004).
  24. S. J. Jeong, D. L. Lee, T. Y. Kim, J. H. Kim, S. J. Kim, and S. Y. Cho, Korean Chem. Eng. Res., 40, 694 (2002).
  25. H. Moon and W. K. Lee, Chem. Eng. Sci., 41, 1995 (1986). https://doi.org/10.1016/0009-2509(86)87116-0
  26. M. S. Son, S. D. Kim, K. J. Woo, H. J. Park, M. C. Seo, S. H. Lee, and S. K. Ryu, Korean Chem. Eng. Res., 44, 669 (2006).
  27. H. S. Kim and Y. S. Park, J. Korean Soc. Atmos. Environ., 15, 805 (1999).
  28. S. W. Baek, J. R. Kim, and S. K. Ihm, Catal. Today, 93, 575 (2004).
  29. J. Huang, X. Jin, J. Mao, B. Yuan, R. Deng, and S. Deng, J. Hazard. Mater., 217, 406 (2012).
  30. A. Rezaee, G. H. Pourtaghi, A. Khavanin, R. S. Mamoory, M. T. Ghaneian, and H. Godini, Iran. J. Environ. Health. Sci. Eng., 5, 305 (2008).
  31. J. Lee and H. Chang, J. Korean Soc. Environ. Eng., 24, 889 (2002).
  32. J. M. Suh and C. H. Jeong, J. Korea Environ. Sci. Soc., 11, 743 (2002).