Changes in the Optical and Thermal Properties of Low-Temperature Cured Polyimide Thin Films Using the Catalyst

촉매를 이용한 저온경화 폴리이미드 박막의 광학적/열적 특성 변화

  • Park, Myeong-Soon (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Kim, Kwang-In (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Nam, Ki-Ho (Department of Chemical & Bimolecular Engineering, Yonsei University) ;
  • Han, Haksoo (Department of Chemical & Bimolecular Engineering, Yonsei University)
  • 박명순 (연세대학교 공과대학 화학공학과) ;
  • 김광인 (연세대학교 공과대학 화학공학과) ;
  • 남기호 (연세대학교 공과대학 화학공학과) ;
  • 한학수 (연세대학교 공과대학 화학공학과)
  • Published : 2013.06.10

Abstract

In this study, various polyimide films were synthesized via low temperature cure in order to understand changes in their physical properties when using 4,4'-oxydianiline (ODA) as a diamine and dianhydride molecules with different backbones on a single diamine such as 4,4'-Oxydiphthalic anhydride (ODPA), 4,4-hexafluoroisopropylidene diphthalic dianhydride (6FDA), and 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA). After the synthesis of poly(amic acid), polyimide films were fabricated by adding 1,4-diazabicyclo [2.2.2]octane (DABCO), a low-temperature catalyst, at various wt% to poly(amic acid)s. Changes of optical and thermal properties were compared and analyzed between polyimide films without catalyst and polyimide films with catalyst by FT-IR, UV-Vis transmittance, DSC/TGA, and WAXD analysis. Wide-angle X-ray diffraction (WAXD) analysis revealed that the mean intermolecular distance decreased with the use of a catalyst by the type of dianhydride. Thus, while the optical properties of the films improve by a low-temperature cure performed using a catalyst, their thermal properties decrease. These changes can be explained by the changes in the morphological structure of the films triggered by a catalyst-induced reduction in the mean intermolecular distance. Moreover, the results show that the type of dianhydride determines the degree of change in the optical and thermal properties in each types of polyimide, demonstrating that changes in the optical and thermal properties are directly associated with the backbone of the polyimide structure.

본 연구에서는 저온경화 공정으로 합성한 다양한 폴리이미드의 물성 변화를 이해하기 위하여 4,4'-oxydianiline (ODA) 단일 다이아민(diamine)에 여러 가지 주쇄(backbone)를 가지는 산무수물(dianhydride)들을 [4,4'-oxydiphthalicanhydride (ODPA), 4,4-hexafluoroisopropylidenediphthalic dianhydride (6FDA), 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA)]사용하였다. 폴리아믹산(poly(amic acid); PAA)의 합성 후, 저온경화 촉매인 1,4-diazabicyclo[2.2.2]octane (DABCO)를 여러 wt%로 첨가하여 폴리이미드 박막을 제작하고 촉매를 넣지 않은 박막과 FT-IR, UV-Vis 투과도, DSC/TGA, WAXD 분석을 통해 그 특성 변화를 비교 분석하였다. 촉매를 이용한 폴리이미드의 저온경화 시 산무수물의 종류에 따라 광학특성 및 열특성 변화량의 차이가 나타났고, 이는 촉매에 의한 mean intermolecular distance의 감소량이 산무수물의 주쇄구조에 따라 다르기 때문으로 확인되었다. 1 wt%의 촉매를 사용 시 광학특성 증가는 최대가 되고 열특성 저하는 최소가 됨을 확인하였다. 이러한 실험결과를 통해 촉매를 이용한 저온경화 폴리이미드 박막의 특성변화는 그 화학구조와 밀접한 관련이 있음을 확인할 수 있다.

Keywords

References

  1. K. L. Mittal, Polyimides: Synthesis, Characterization and Application, Plenum, New York (1984).
  2. D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Polyimides: Chapman & Hall, New York (1990).
  3. M. I. Bessonove, M. M. Koton, V. V. Kudryyavtsev, and L. A. Kaius, Polyimides: Thermally Stable Polymer; Consultants Bureau, New York (1987).
  4. W. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, Polymer, 42, 6393 (2001). https://doi.org/10.1016/S0032-3861(01)00111-2
  5. H. S. Chung, Y. I. Joe, and H. S. Han, J. Appl. Polym. Sci., 74, 3287 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3287::AID-APP1>3.0.CO;2-W
  6. K.-I. Iwashita, T. Hattori, T. Minegishi, S. Ando, F. Toyokawa, and M. Ueda, J. Photopolym. Sci. Technol., 19, 281 (2006). https://doi.org/10.2494/photopolymer.19.281
  7. M. Wohrmann, M. Topper, H. Walter, and K.-D. Lang, Proc 61st Electronic Components and Technology Conference (ECTC), 392 (2011).
  8. J. Yota, H. Ly, R. Ramanathan, H. C. Sun, D. Barone, T. Nguyen, K. Katoh, M. Ohe, R. L. Hubbard, and K. Hicks, IEEE Trans. Semicond. Manuf., 20, 323 (2007). https://doi.org/10.1109/TSM.2007.901410
  9. K. D. Farnsworth, R. N. Manepalli, S. A. Bidstrup-Allen, and P. A. Kohl, IEE Trans. Compon. Packag. Technol., 24, 474 (2001). https://doi.org/10.1109/6144.946496
  10. R. V. Tanikella, S. A. Bidstrup-Allen, and P. A. Kohl, J. Appl. Polym. Sci., 83, 3055 (2002). https://doi.org/10.1002/app.10286
  11. K.-I. Fukukawa, Y. Shibasaki, and M. Ueda, Chem. Lett., 33, 1156 (2004). https://doi.org/10.1246/cl.2004.1156
  12. K.-I. Fukukawa, T. Ogura, Y. Shibasaki, and M. Ueda, Chem. Lett., 34, 1372 (2005). https://doi.org/10.1246/cl.2005.1372
  13. T. S. Lee, S. S. Park, Y. I. Jung, S. W. Han, D. H. Han, I. Kim, and C. S. Ha, Eur. Polym. J., 45, 19 (2009). https://doi.org/10.1016/j.eurpolymj.2008.09.022
  14. J. Pfeifer and O. Rhode, "Recent Advances in Polyimide Science and Technology," The Society of Plastic Engineers, Poughkepsie, New York, 336 (1987).
  15. H. Higuchi, T. Yamashita, K. Horie, and I. Mita, Chem. Mater., 3, 188 (1991). https://doi.org/10.1021/cm00013a038
  16. S. Ando, T. Matsuura, and S. Sasaki, Polym. J., 29, 69 (1997). https://doi.org/10.1295/polymj.29.69
  17. C. Lee, Y. Shul, and H. Han, J. Polym. Sci. Part B: Polym. Phys., 40, 2190 (2002).
  18. J. Seo, A. Lee, J. Oh, and H. Han, Polym. J., 32, 583 (2000). https://doi.org/10.1295/polymj.32.583
  19. A. Lee, J. Seo, J. Jeon, and H. Han, HWAHAK KONGHAK, 38, 249 (2000).
  20. M.-H. Park, S.-J. Yang, W. Jang, and H. Han, Korean Chemical Engineering Research, 43, 305 (2005).