Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon

입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Published : 2013.06.10

Abstract

Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

입상 활성탄에 대한 bismarck brown R의 흡착평형, 동력학 및 열역학 파라미터들을 회분식 실험을 통해 살펴보았다. 조작변수로서 초기농도, 접촉시간과 흡착온도의 영향을 조사하였다. 흡착평형자료는 선형회귀법을 사용하여 Langmuir와 Freundlich 흡착등온식에 대한 적합성을 평가하였다. 흡착평형은 Freundlich 흡착등온식이 더 잘 맞았으며, 계산된 분리계수(1/n) 값으로부터 입상 활성탄이 bismarck brown R을 효과적으로 처리할 수 있다는 것을 알 수 있었다. 동력학적 실험으로부터, 흡착공정은 유사이차반응속도식에 잘 맞으며, 속도상수($k_2$) 값은 온도가 증가할수록 증가하였다. 활성화에너지, 엔탈피, 엔트로피 및 Gibbs 자유에너지변화와 같은 열역학 파라미터들은 흡착공정의 특성을 평가하기 위하여 298~318 K의 온도 범위에서 조사하였다. 활성화 에너지의 계산값은 100 mg/L에서 8.73 kJ/mol로 입상 활성탄에 대한 bismarck brown R의 흡착이 물리적 공정임을 나타냈다. Gibbs 자유에너지변화의 음수값(${\Delta}G$ = -2.59~-4.92 kJ/mol)과 엔탈피변화의 양수값(${\Delta}H$ = +26.34 kJ/mol)은 흡착공정이 자발적이며 흡열과정으로 일어난다는 것을 나타냈다.

Keywords

References

  1. A. B. Dos Santos, F. J. Cervantes, and J. B. Van Lier, Bioresour. Technol., 98, 2369 (2006).
  2. B. Shi, G. Li, C. Wang, I. Feng, and H. Tang, J. Hazard. Mater., 143, 567 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076
  3. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B113, 2293 (2009).
  4. D. Mahanta, G. Madras, S. Rdhakrishnan, and S. Patil, J. Phys. Chem., B112, 10153 (2008).
  5. M. Dogan, M. H. Karaoglu, and M. Alkan, J. Hazard. Mater., 165, 1142 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.101
  6. L. Zhou, C. Gao, and W. Xu, ACS Appl. Mater. Interfaces, 2, 1483 (2010). https://doi.org/10.1021/am100114f
  7. W. Chen, W. Lu, Y. Yao, and M. Xu, Environ. Sci. Technol., 41, 6240 (2007). https://doi.org/10.1021/es070002k
  8. J. J. Lee, Appl. Chem. Eng., 22, 224 (2011).
  9. V. K. Gupta, A. Mittal, L. Krisnan, and V. Grajbe, Sep. Purif. Technol., 40, 87 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  10. M. U. Dural, L. Canas, S. K. Papageorgiou, and F. K. Katsaros, Chem. Eng. J., 168, 77 (2011). https://doi.org/10.1016/j.cej.2010.12.038
  11. M. Dogan, Y. Ozdemir, and M. Alkan, Dyes Pigments, 75, 701 (2007). https://doi.org/10.1016/j.dyepig.2006.07.023
  12. J. J. Lee and M. H. Um, Appl. Chem. Eng., 23, 450 (2012).
  13. B. H. Fukukawa, Activated carbon water treatment technology and management, ed. Y. K. Kim, 69, Shinkwang Munhwa Publishing Co. Seoul (1996).
  14. Z. Aksu, Biochem. Eng. J., 7, 79 (2001). https://doi.org/10.1016/S1369-703X(00)00098-X
  15. Y. Onal, C. A. Basar, D. Eren, C. S. Onalzdemir, and T. Depci, J. Hazard. Mater., 128, 150 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.055
  16. C. Ijagbemi, M. Baek, and D. Kim, J. Hazard. Mater., 166, 538 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.085
  17. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  18. M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
  19. M. Dorgan, M. Alkan, O. Demirbas, Y. Ozdemir, and C. Ozmetin, Chem. Eng. J., 124, 89 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  20. S. Chakraborty, S. Chowdhury, and P. D. Saha, Korean J. Chem. Eng., 29, 1567 (2012). https://doi.org/10.1007/s11814-012-0049-5
  21. M. H. Baek, C. O. Ijagbemi, S. J. O, and D. S. Kim, J. Hazard. Mater., 176, 820 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.110
  22. C. Wang. J. Li, L. Wang, X. Sun, and J. Huang, Chinese J. Chem. Eng., 17, 513 (2009). https://doi.org/10.1016/S1004-9541(08)60239-6
  23. M. T. Sulak, E. Demirbas, and M. Kobya, Biores. Technol., 98, 2590 (2007). https://doi.org/10.1016/j.biortech.2006.09.010
  24. R. Ahmad and R. Kumar, J. Environ. Manag., 91, 1032 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  25. Z. Wu, H. Joo, and K. Lee, Chem. Eng. J., 112, 227 (2005). https://doi.org/10.1016/j.cej.2005.07.011
  26. J. J. Lee, Appl. Chem. Eng., 24, 184 (2013).