Evaluation of the Applicability of CLSM by Numerical Method and Field Test

현장시험과 수치해석에 의한 관거 뒤채움용 CLSM 적용성 평가

  • Nam, Joongwoo (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Byun, Yoshep (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Chun, Byungsik (Dept. of Civil and Environmental Engineering, Hanyang University)
  • Published : 2013.07.01

Abstract

The safety and structural integrity of buried pipes are usually at risk from constructing loading and compaction of backfill materials. The backfill material should be strong enough to help resistance and redistribute loads so that the buried pipe remains unaffected. Due to the many problems associated with buried pipes, there have been multiple studies on the development of a sustainable backfill material. In this study, a Controlled Low Strength Material made of coal ash was considered as a buried pipe backfill material. To determine the feasibility and performance of this backfill material, a numerical simulation was conducted with the results confirmed by a field test. Results showed maximum settlement to be 2 mm with the elastic strain of the buried pipe to be about 0.006.

지반을 굴착하고 지하매설물을 설치한 후 뒤채움하는 시공에 있어 뒤채움재에 의한 하중은 지하매설물의 안정성을 저감시키고, 이로 인해 각종 파손이 발생한다. 이러한 문제점을 해결하기 위해 여러 산업 부산물을 이용하여 관의 변형을 일으키지 않고 소정의 강도를 가질 수 있는 뒤채움재를 개발하기 위해 다양한 연구가 진행되고 있다. 본 연구에서는 화력발전소의 산업부산물인 석탄회를 활용한 뒤채움재를 사용하여 그 중 CLSM에 대한 물리적 특성 기준에 가장 적합한 배합비를 선택하여 현장시험을 실시하였고, 수치해석을 수행하여 실험결과의 신뢰성을 높였으며 뒤채움 후 DB-24 하중을 재하하여 하중재하 전 후의 지표침하량, 매설관의 변형률을 분석하였다. 그 결과 현장실험과 수치해석 모두 비슷한 결과를 얻었고 침하량은 2mm 이하로 나타났으며 매설관의 변형률은 최대 0.006으로 나타났다.

Keywords

References

  1. 국토해양부 (2010), 도로설계편람 제6편 터널편, pp. 502-651.
  2. 농림수산식품부 (2009), 농업생산기반정비사업계획설계기준(관수로편), pp. 181-201.
  3. 천병식 (2010), 지반공학 - 이론과 실제 - (3판), 구미서관, pp. 269-279.
  4. 천병식 (2011), 석탄회를 활용한 경량 유동성채음재 제조공정개발, No. 20091020100060, 지식경제부, pp. 16-206.
  5. 台北市政府養護工程處 (2002), 控制性低强度材料於土木工程應用 之硏究, pp. 1-215.
  6. American Coal Ash Association (2003), Fly ash facts for high-way engineers, Technical Report, FHWA-IF-03-019, pp. 1-8.
  7. American Concrete Institute Committee 116R(1988), Report-cement and concrete terminology, ACI Manual of Concrete Practice 116R-00, pp. 1-8.
  8. American Concrete Institute Committee 229(1994), ACI 229R-94 report-controlled low strength materials (CLSM), Concrete International, Vol. 16, No. 7, pp. 1-8.
  9. Davis, E. H.(1968), Theories of plasticity and the failure of soil masses, In Soil Mechanics: Selected Topics(ed. Lee, I. K.), Butterworth, pp. 341-380.
  10. Kang, B. J.(2009), A study on the deformation characteristics on underground pipe to backfill material types, Master's thesis, Hanyang University, pp. 1-43 (in Korean).
  11. Kim, T. S., Jeong, S. S., Lee, D. S., Kim, D. H.(2007), Deformation characteristics of quick-set flowable backfill materials excavated soil for underground power cables, Journal of Korean Society of Civil Engineers, Vol. 27, No. 1, pp. 45-53 (in Korean).
  12. Park, J. H., Lee, K. H., Jo, J. Y., Seong, S. K.(2003), Deformation behaviour underground pipe with CLSM, Journal of Korean Society of Road Engineers, Vol. 5, No. 2, pp. 25-35 (in Korean).
  13. Shin, Y. G., Won, J. P.(1998), Mechanical and physical properties of flowable high volume fly ash-cement composites, Journal of Agricaltural Resources Development, Vol. 20, pp. 47-53 (in Korean).
  14. Skempton, A. W., Peck, R. B., Macdonald, D. H.(1955), Settlement analyses of six structures in Chicago and London. Proc. Institute of Civil Engineering Part I, 4, pp. 525-544. https://doi.org/10.1680/iicep.1955.11401