Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature

Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의

  • Lee, Keon Haeng (Water Quality Control Center, National Institute of Environmental Research) ;
  • Choi, Hyun Il (Department of Civil Engineering, Yeungnam University) ;
  • Kwon, Hyun Han (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University) ;
  • Chung, Eu Gene (Water Quality Control Center, National Institute of Environmental Research) ;
  • Kim, Kyunghyun (Water Quality Control Center, National Institute of Environmental Research)
  • 이건행 (국립환경과학원 수질통합관리센터) ;
  • 최현일 (영남대학교 건설시스템공학과) ;
  • 권현한 (전북대학교 토목공학과) ;
  • 김상단 (부경대학교 환경공학과) ;
  • 정유진 (국립환경과학원 수질통합관리센터) ;
  • 김경현 (국립환경과학원 수질통합관리센터)
  • Published : 2013.03.30

Abstract

A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

Keywords

References

  1. Bae, D. H., Jung, I. W., Lee, B. J., and Lee, M. H. (2011). Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models, Journal of Korea Water Resources Association, 44(5), pp. 389-406, [Korean Literature] https://doi.org/10.3741/JKWRA.2011.44.5.389
  2. Beven, K. J. (1982a). Macropores and Water Flow in Soils, Water Resources Research, 18, pp. 1311-1325. https://doi.org/10.1029/WR018i005p01311
  3. Beven, K. J. (1982b). On Subsurface Stormflow: An Analysis of Response Times, Hydrological Sciences Journal, 27, pp. 505-521. https://doi.org/10.1080/02626668209491129
  4. Beven, K. J. (1984). Infiltration into a Class of Vertically Nonuniform Soils, Hydrological Sciences Journal, 29, pp. 425-434. https://doi.org/10.1080/02626668409490960
  5. Beven, K. J. and Kirkby, M. J. (1979). A Physically based Variable Contributing Area Model of Basin Hydrological, Hydrological Science Bulletin, 24(1), pp. 43-69. https://doi.org/10.1080/02626667909491834
  6. Bonan, G. B. (1996). A Land Surface Model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies (Technical Description and User's Guide), NCAR Tech. NCAR/TN-417+STR, National Center of Atmospheric Research.
  7. Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y. J., Dickson, R. E., and Yang, Z. L. (2002). The Land Surface Climatology of the Community Land Model coupled to the NCAR Community Climate Model, Journal of Climate, 15, pp. 3123-3149. https://doi.org/10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2
  8. Branstetter, M. L. (2001). Development of a Parallel River Transport Algorithm and Applications to Climate Studies, Ph.D dissertation, University of Texas at Austin.
  9. Branstetter, M. L. and Famiglietti, J. S. (1999). Testing the Sensitivity of GCM-simulated Runoff to Climate Model Resolution using a Parallel River Transport Algorithm, 14th Conference on Hydrology, Dallas, TX, American Meteorological Society, pp. 391-392.
  10. Brooks, R. H. and Corey, A. T. (1964). Hydraulic Properties in Porous Media, Colorado State University, Fort Collins, Colorado, pp. 27.
  11. Choi, C. H., Choi, D. G., Choi, H. I., Kim, K. H., and Kim, S. D. (2012). Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation, Journal of Korean Society on Water Environment, 28(1), pp.137-147. [Korean Literature]
  12. Choi, H. I. (2008a). Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I, Model Description, Journal of Korean Society of Hazard Mitigation, 8(2), pp. 59-63. [Korean Literature]
  13. Choi, H. I. (2008b). Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II, Model Implementation, Journal of Korean Society of Hazard Mitigation, 8(3), pp. 23-27. [Korean Literature]
  14. Choi, H. I., Kumar, P., and Liang, X. Z. (2007). Threedimensional Volume-averaged Soil Moisture Transport Model with a Scalable Parameterization of Subgrid Topographic Variability, Water Resources Research, 43, W04414, doi: 10.1029/2006WR005134.
  15. Choi, M., Lee, S., and Kwon, H. (2010). Understanding of the Common Land Model Performance for Water Energy Fluxes in a Farmland during the Growing Season in Korea, Hydrological Processes, 24, pp. 1063-1071. https://doi.org/10.1002/hyp.7567
  16. Chung, E. G., Lee, K. H., Lee, E. J., Kim, K. H., Shin, Y. N., Shin, C. M., Kang, T. G., Lee, S. W., and Shin, K. S. (2011). Integrated Impact Assessment of Climate Change on Watershed Environment (III), National Institute of Environmental Research. [Korean Literature]
  17. Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z. L. (2003). The Common Land Model, American Meteorological Society, pp. 1013-1023.
  18. Dai, Y., Zeng, X., Dickinson, R. E., and Coauthors (2001). Common Land Model (Technical Documentation and User's Guide), School of Geography, Beijing Normal University, pp. 21-40.
  19. Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J. (1993). Biosphere Atmosphere Transfer Scheme (BATS) version 1e as coupled for Community Climate Model, NCAR Tech. Note NCAR/TN-378+STR, National Center for Atmospheric Research.
  20. El Maayar, M., Price, D. T., Black, T. A., Hymphreys, E. R., and Jork, E. M. (2002). Sensitivity Tests of the Integrated Biosphere Simulator to Soil and Vegetation Characteristics in a Pacific Coastal Coniferous Forest, Atmosphere-Ocean, 40(3), pp. 313-332. https://doi.org/10.3137/ao.400303
  21. Elsenbeer, H., Cassel, D. K., and Castro, J. (1992). Spatial Analysis of Soil Hydraulic Conductivity in a Tropical Rainforest Catchment, Water Resources Research, 28, pp. 3201-3214. https://doi.org/10.1029/92WR01762
  22. Food and Agriculture Organization (FAO). (1996). The Digitized Soil Map of the World Including Derived Soil Properties, CD-ROM, Rime, France.
  23. Giorgi, F., Hewitson, B., Christensen, J., Hulme, M., Von Storch, H., Whetton, P., Jones, R., Mearns, L., and Fu, C. (2001). Regional climate information: Evaluation and Projections. In: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel Climate Change, Mietus, M., Zillman, J., Eds. Cambridge University Press, Cambridge, UK, pp. 583-638.
  24. Giorgi, F. and Mearns, L. O. (1999). Introduction to Special Section: Regional Climate Modeling Revisited, Journal of Geophysics Research, 104, pp. 6335-6352. https://doi.org/10.1029/98JD02072
  25. Gochis, D. J. and Chen, F. (2003). Hydrological Enhancements to the Community Noah Land Surface Model, NCAR Technical Note, National Center of Atmospheric Research.
  26. Henderson-Sellers, A. (1992). Assessing the Sensitivity of a Land-surface Scheme to Parameters used in Tropical Deforestation experiments, Quarterly Journal of the Royal Meteorological Society, 118(508), pp. 1101-1116. https://doi.org/10.1002/qj.49711850805
  27. Jang, J. H., Hong, J. K., Byun, Y. H., Kwon, H. J., Chae, N. Y., Lim, J. H., and Kim, J. (2010). A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration, Korean Journal of Agricultural and Forest Meteorology, 12(2), pp. 107-121. [Korean Literature] https://doi.org/10.5532/KJAFM.2010.12.2.107
  28. Jin, J. U., Hwang, K. T., Choi, M. H., Lee, S. O., and Jung, S. W. (2009). Evaluation of Soil Moisture using CLM in Seolmacheon, Proceedings of the 2009 Conference of the Korean Society of Civil Engineers, pp. 1514-1517. [Korean Literature]
  29. Jung, I. W. and Bae, D. H. (2005). A Study on PRMS Applicability for Korean River Basin, Journal of Korea Water Resources Association, 38(9), pp. 713-725. [Korean Literature] https://doi.org/10.3741/JKWRA.2005.38.9.713
  30. Kang, S. K. (2005). Analysis on Cloud-Originated Errors of MODIS Leaf Area Index and Primary Production Images: Effect of Monsoon Climate in Korea, Korean Journal of Ecology, 28(4), pp. 215-222. [Korean Literature] https://doi.org/10.5141/JEFB.2005.28.4.215
  31. Kim, B. S., Seo, B. H., Kim, H. S., and Kim, N. W. (2003). Simulation of Daily Streamflows using SLURP Model, Journal of the Korean Society of Civil Engineers, 23(4B), pp. 289-303. [Korean Literature]
  32. Kim, E. S., Choi, H. I., and Kim, S. D. (2011). Implementation of a Topographically Controlled Runoff Scheme for Land Surface Parameterizations in Regional Climate Models, KSCE Journal of Civil Engineering, 15(7), pp. 1309-1318. https://doi.org/10.1007/s12205-011-1276-8
  33. Kim, K. H., Chung, E. G., Jeong, N. I., Na, E. H., and Kim, H. T. (2010). Integrated Impact Assessment of Climate Change on Watershed Environment (II), National Institute of Environmental Research. [Korean Literature]
  34. Kim, S. B., Chun, H. Y., and Kim. J. (1998). A Validation Study of the Biosphere-atmosphere Transfer Scheme (BATS), using Point Micrometeorological Data, Asia-Pacific Journal of Atmospheric Sciences, 34(4), pp. 602-612.
  35. Kim, S. J., Kim, B. S., Jun, H. D., and Kim, H. S. (2010). The Evaluation of Climate Change Impacts on the Water Scarcity of the Han River Basin in South Korea using High Resolution RCM data, Journal of Korea Water Resources Association, 43(3), pp. 295-308. [Korean Literature] https://doi.org/10.3741/JKWRA.2010.43.3.295
  36. Korea Meteorological Administration (KMA). (2009). ANNUAL CLIMATOLOGICAL REPORT. [Korean Literature]
  37. Kumar, P. (2004). Layer Averaged Richard's Equation with Lateral Flow, Advances in Water Resources, 27, pp. 521-531. https://doi.org/10.1016/j.advwatres.2004.02.007
  38. Land Process Distributed Active Archive Center (LPDAAC), http://lpdaac.usgs.gov/
  39. Ledoux, E., Girard, G., De Marsily, G., and Deschenes, J. (1989). Spatially Distributed Modeling: Conceptual Approach, coupling Surface Water and Ground-water, in Unsaturated Flow Hydrologic Modeling: Theory and Practice, NATO ASI Series C, 275, pp. 435-454, Kluwer Acad., Norwell, Mass.
  40. Lee, K. H., Chung, E. G., Kim, K. H., Yu, J. A., and Lee, E. J. (2012). Vulnerability Assessment of Water Quality and Aquatic Ecosystem to Climate Change in Korea using Proxy Variables, Journal of Korean Society on Water Environment, 28(3), pp. 444-452. [Korean Literature]
  41. Lee, Y. J., Park, J. Y., Park, M. J., and Kim, S. J. (2008). Assessment of Future Climate and Land Use Change Impact on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (I), Journal of the Korean Society of Civil Engineers, 28(6B), pp. 653-663. [Korean Literature]
  42. Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L. (2003). Regional Climate Research, Bull., American Meteorological Society, 84, pp. 89-95. https://doi.org/10.1175/BAMS-84-1-89
  43. Liang, X. Z., Choi, H. I., Kunkel, K. E., Dai, Y., Joseph, E., Wang, J. X. L., and Kumar, P. (2005). Surface Boundary Conditions for Mesoscale Regional Climate Models, Earth Interaction, 9(18), pp. 1-28.
  44. Liang, X. Z., Xu, M., Yuan, X., Ling, T., Choi, H. I., Zhang, F., Chen, L., Liu, S., Su, S., Qiao, F., He, Y., Wang, J. X. L., Kunkel, K. E., Gao, W., Joseph, E., Morris, V., Yu, T. W., Dudhia, J., and Michalakes, J. (2012). Regional Climate-Weather Research and Forecasting Model, Bulletin of the American Meteorological Society, 93(9), pp. 1363-1387. https://doi.org/10.1175/BAMS-D-11-00180.1
  45. Manabe, S. (1969). Climate and the Ocean Circulation. I. The Atmospheric Circulation and the Hydrology of the Earths Surface, Monthly Weather Review, 97, pp. 739-744. https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2
  46. Ministry of Environment (MOE). (2012). Water Quality Monitoring Network Operation Plan, Ministry of Environment. [Korean Literature]
  47. Niu, G. Y. and Yang, Z. L. (2003). The Versatile Integrator of Surface and Atmosphere Processes (VISA) Part II: Evaluation of Three Topography based Runoff Schemes, Global and Planetary Change, 38, pp. 191-208. https://doi.org/10.1016/S0921-8181(03)00029-8
  48. Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E. (2005). A Simple TOPMODEL-based Runoff Parameterization (SIMTOP) for use in GCMs, Journal of Geophysical Research, 110, D21106, doi:10.1029/2005JD006111.
  49. Noilhan, J. and Planton, S. (1989). A Simple Parameterization of Land Surface Process for Meteorological Models, Monthly Weather Review, 117, pp. 536-549. https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
  50. Oh, S. G., Suh, M. S., Myoung, J. S., and Cha, D. H. (2011). Impact of Boundary Conditions and Cumulus Parameterization Schemes on Regional Climate Simulation over South-Korea in the CORDEX-East Asia Domain Using the RegCM4 Model, Journal of Korean Earth Science Society, 32(4), pp. 373-387. [Korean Literature] https://doi.org/10.5467/JKESS.2011.32.4.373
  51. Park, J. Y., Park, M. J., Ahn, S. R., and Kim, S. J. (2009). Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed, Journal of Korea Water Resources Association, 42(10), pp. 877-889. [Korean Literature] https://doi.org/10.3741/JKWRA.2009.42.10.877
  52. Pitman, A. J. (1994). Assessing the Sensitivity of a Landsurface Scheme to the Parameter Values using a Single Column Model, Journal of Climate, 7(12), pp. 1856-1869. https://doi.org/10.1175/1520-0442(1994)007<1856:ATSOAL>2.0.CO;2
  53. Richards, L. A. (1931). Capillary Conduction of Liquids in Porous Mediums, Physics, 1(5), pp. 318-333. https://doi.org/10.1063/1.1745010
  54. Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A. (1986). A Simple Biosphere Model (SiB) for Use within General Circulation Models, Journal of Atmospheric Science, 43, pp. 305-331. https://doi.org/10.1175/1520-0469(1986)043<0305:OMDOGS>2.0.CO;2
  55. Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L. (1996). A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part I: Model Formulation, Journal of Climate, 9, pp. 676-705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
  56. Shon, T. S., Lim, Y. G., Baek, M. K., and Shin, H. S. (2010). Analysis for Air Temperature Trend and Elasticity of Air-water Temperature according to Climate Change in Nakdong River Basin, Journal of Korean Society on Water Quality, 26(5), pp. 822-833. [Korean Literature]
  57. Steiner, A. L., Pal, J. S., Giorgi, F., Dickinson, R. E., and Chameides, W. L. (2005). The Coupling of the Common Land Model (CLM0) to Regional Climate Model (RegCM), Theoretical and Applied Climatology, 82(3), pp. 225-243. https://doi.org/10.1007/s00704-005-0132-5
  58. Van den Hurk, B., Viterbo, P., Beljaars, A. C. M., and Betts, A. K. (2000). Offline Validation of the ERA-40 Surface Scheme, ECMWF tech. Memo. 295, pp. 1-42.
  59. Water Information System. http://water.nier.go.kr/
  60. Wilson, M. F., Henderson-Sellers, A., Dickinson, R. E., and Kennedy, P. J. (1987). Sensitivity of the Biosphere Atmosphere Transfer Scheme (BATS) to the Inclusion of Variable Soil Characteristics, Journal of Applied Meteorology, 26(3), pp. 341-362. https://doi.org/10.1175/1520-0450(1987)026<0341:SOTBTS>2.0.CO;2
  61. Yucel, I. (2006). Effects of Implementing MODIS Land Cover and Albedo in MM5 at Two Contrasting U.S. Regions, Journal of Hydrometeorology, 7, pp. 1043-1060. https://doi.org/10.1175/JHM536.1
  62. Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., DeFries, R. S., and Qi, J. (2000). Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling, Journal of Applied Meteorology, 39, pp. 826-839. https://doi.org/10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2
  63. Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E., and Myneni, R. (2002). Coupling of the Common Land Model to the NCAR Community Climate Model, Journal of Climate, 15(14), pp. 1832-1854. https://doi.org/10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2