DOI QR코드

DOI QR Code

Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2)

  • Kim, Jeong-Mok (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University) ;
  • Won, Hyung-Sik (Department of Biotechnology, Konkuk University) ;
  • Kang, Sa-Ouk (Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University)
  • Received : 2013.05.13
  • Accepted : 2013.06.10
  • Published : 2013.06.20

Abstract

BldD, a developmental transcription factor from Streptomyces coelicolor, is a homodimeric, DNA-binding protein with 167 amino acids in each subunit. Each monomer consists of two structurally distinct domains, the N-terminal domain (BldD-NTD) responsible for DNA-binding and dimerization and the C-terminal domain (BldD-CTD). In contrast to the BldD-NTD, of which crystal structure has been solved, the BldD-CTD has been characterized neither in structure nor in function. Thus, in terms of structural genomics, structural study of the BldD-CTD has been conducted in solution, and in the present work, mainchain NMR assignments of the recombinant BldD-CTD (residues 80-167 of BldD) could be achieved by a series of heteronuclear multidimensional NMR experiments on a [$^{13}C/^{15}N$]-enriched protein sample. Finally, the secondary structure prediction by CSI and TALOS+ analysis using the assigned chemical shifts data identified a ${\beta}-{\alpha}-{\alpha}-{\beta}-{\alpha}-{\alpha}-{\alpha}$ topology of the domain. The results will provide the most fundamental data for more detailed approach to the atomic structure of the BldD-CTD, which would be essential for entire understanding of the molecular function of BldD.

Keywords

References

  1. Chater, K.F. Trends Genet. 5, 372. (1989). https://doi.org/10.1016/0168-9525(89)90172-8
  2. Hopwood, D.A. Microbiology. 145, 2183. (1999). https://doi.org/10.1099/00221287-145-9-2183
  3. Willey, J.; Schwedock, J.; Losick, R. Genes Dev. 7, 895. (1993). https://doi.org/10.1101/gad.7.5.895
  4. Elliot, M.; Damji, F.; Passantino, R.; Chater, K.; Leskiw, B. J Bacteriol. 180, 1549. (1998).
  5. Kelemen, G.H.; Buttner, M.J. Curr Opin Microbiol. 1, 656. (1998). https://doi.org/10.1016/S1369-5274(98)80111-2
  6. Elliot, M.A.; Leskiw, B.K. J Bacteriol. 181, 6832. (1999).
  7. Elliot, M.A.; Locke, T.R.; Galibois, C.M.; Leskiw, B.K. FEMS Microbiol Lett. 225, 35. (2003). https://doi.org/10.1016/S0378-1097(03)00474-9
  8. Lee, C.-J.; Won, H.-S.; Kim, J.-M.; Lee, B.-J.; Kang, S.-O. Proteins. 68, 344. (2007). https://doi.org/10.1002/prot.21338
  9. den Hengst, C.D.; Tran, N.T.; Bibb, M.J.; Chandra, G.; Leskiw, B.K.; Buttner, M.J. Mol Microbiol. 78, 361. (2010). https://doi.org/10.1111/j.1365-2958.2010.07338.x
  10. Elliot, M.A.; Bibb, M.J.; Buttner, M.J.; Leskiw, B.K. Mol Microbiol. 40, 257. (2001). https://doi.org/10.1046/j.1365-2958.2001.02387.x
  11. Bibb, M.J.; Molle, V.; Buttner, M.J. J Bacteriol. 182, 4606. (2000). https://doi.org/10.1128/JB.182.16.4606-4616.2000
  12. Chater, K.F.; Bruton, C.J.; Plaskitt, K.A.; Buttner, M.J.; Mendez, C.; Helmann, J.D. Cell. 59, 133. (1989). https://doi.org/10.1016/0092-8674(89)90876-3
  13. Kelemen, G.H.; Viollier, P.H.; Tenor, J.; Marri, L.; Buttner, M.J.; Thompson, C.J. Mol Microbiol. 40, 804. (2001). https://doi.org/10.1046/j.1365-2958.2001.02417.x
  14. Kim, I.-K.; Lee, C.-J.; Kim, M.-K.; Kim, J.-M.; Kim, J.-H.; Yim, H.-S.; Cha, S.-S.; Kang, S.-O. Mol Microbiol. 60, 1179. (2006). https://doi.org/10.1111/j.1365-2958.2006.05176.x
  15. Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A.F.; J biomol NMR. 6, 277. (1995).
  16. Johnson, B. A. Methods Mol Biol. 278, 313. (2004).
  17. Wishart, D.S.; Sykes, B.D.; Richards, F.M. Biochemistry. 31, 1647. (1992). https://doi.org/10.1021/bi00121a010
  18. Wishart, D.S.; Sykes, B.D. J Biomol NMR. 4, 171. (1994).
  19. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A. J Biomol NMR. 44, 213. (2009). https://doi.org/10.1007/s10858-009-9333-z
  20. Lee, Y.-S.; Won, H.-S. J Kor Magn Reson Soc. 16, 172. (2012). https://doi.org/10.6564/JKMRS.2012.16.2.172
  21. Sim, D.-W.; Jo, K.-S.; Ryu, K.-S.; Kim, E.-H.; Won, H.-S. J Kor Magn Reson Soc. 16, 22. (2012). https://doi.org/10.6564/JKMRS.2012.16.1.022
  22. Bell, C.E.; Lewis, M. J Mol Biol. 314, 1127. (2001). https://doi.org/10.1006/jmbi.2000.5196
  23. Bell, C.E.; Frescura, P.; Hochschild, A.; Lewis, M. Cell. 101, 801. (2000). https://doi.org/10.1016/S0092-8674(00)80891-0
  24. Won, H.-S.; Lee, T.-W.; Park, S.-H.; Lee, B.-J. J Biol Chem. 277, 11450. (2002). https://doi.org/10.1074/jbc.M112411200
  25. Pabo, C.O.; Lewis, M. Nature. 298, 443. (1982). https://doi.org/10.1038/298443a0
  26. Anderson, W.F.; Ohlendorf, D.H.; Takeda, Y.; Matthews, B.W. Nature. 290, 754. (1981). https://doi.org/10.1038/290754a0
  27. Steitz, T.A.; Ohlendorf, D.H.; McKay, D.B.; Anderson, W.F.; Matthews, B.W. Proc Natl Acad Sci USA. 79, 3097. (1982). https://doi.org/10.1073/pnas.79.10.3097