Application of Water Treatment with Membrane in Seomjin River

섬진강 수계에서 막여과 정수처리 공정 적용성 평가

  • Kim, Jongdoo (Department of Environmental Engineering, Graduate School, The University of Seoul) ;
  • Park, Kyungwook (Institute of Construction Technology, KUMHO Engineering & Construction) ;
  • Park, Chulhwi (Department of Environmental Engineering, Graduate School, The University of Seoul)
  • 김종두 (서울시립대학교 대학원 환경공학과) ;
  • 박경욱 (금호건설 기술연구소) ;
  • 박철휘 (서울시립대학교 대학원 환경공학과)
  • Received : 2012.12.04
  • Accepted : 2013.02.20
  • Published : 2013.02.28

Abstract

On the subject of river bed water in Seomjin river, it had accomplished the verifying experiment of membrane filtration pilot plant for evaluating the applicability of its process throughout the prediction of membrane fouling as a function of the pore size of membrane and the determination of optimum coagulant dosage. On the result of the experiment for the evaluation of the membrane fouling as a function of the pore size, a increasing rate of irreversible resistance of membrane pore size $0.1{\mu}m$ and $0.01{\mu}m$ was measured each $0.44{\times}10^{12}/m^2$ and $0.42{\times}10^{12}/m^2$, respectively. And on the result of Flux-test, it showed that the optimum coagulant dosage was measured lower than the it of the Jar-test. The result to be operated in a condition of a permeate flux $1.0{\sim}1.5m^3/m^2{\cdot}day$ without coagulation and a permeate flux $1.0{\sim}2.0m^3/m^2{\cdot}day$ with coagulation was maintained at stable trans-membrane pressure (TMP) value for 6 months up to. Therefore it showed that the stable operation without the coagulation was possible on permeate flux $1.0{\sim}1.5m^3/m^2{\cdot}day$ in the operation of membrane filtration process.

섬진강 수계의 복류수를 대상으로 막여과 정수처리 공정 현장 적용성 평가를 위해 여과막의 공경에 따른 막오염도 예측 및 최적 응집제 주입농도 선정을 통해 파일롯플랜트 규모의 검증실험을 실시하였다. 막공경에 따른 막오염도 평가를 위한 여과저항 평가실험 결과, $0.1{\mu}m$$0.01{\mu}m$ 여과막의 비가역적 여과저항 증가율은 각각 $0.44{\times}10^{12}/m^2$, $0.42{\times}10^{12}/m^2$로 나타났으며, Flux-test 실험결과, 적정응집제 주입농도는 Jar-Test 실험결과에 비해 낮게 나타났다. 현장 적용성 평가를 위해 6개월 동안의 파일롯플랜트 운영을 수행하였다. 응집을 실시하지 않은 막여과공정은 여과유속 $1.0{\sim}1.5m^3/m^2{\cdot}day$, 응집을 실시한 막여과 공정은 여과유속 $1.0{\sim}2.0m^3/m^2{\cdot}day$의 조건에서 운전한 결과 두 조건 모두 6개월 이상 막차압이 안정되게 유지되었다. 따라서 섬진강 수계의 복류수를 이용한 막여과 공정 운영에 있어 적정 여과유속으로 운전 시 응집제 사용 없이 안정적인 운전이 가능함을 알 수 있었다.

Keywords

References

  1. H. Huang, K. Schwab, and J. G. Jacangelo, "Pretreatment for low pressure membrane in water treatment: a review", Environ. Sci. Technol. 43, 3011 (2009). https://doi.org/10.1021/es802473r
  2. K. H. Lee, Y. J. Huh, D. Y. Kim, S. W. Han, D. J. Hwang, and B. J. Lim, "Evaluation for water quality and pollutant load of sumjin river watershed", Proceedings of 2010 Co-Conference of Korea Society on Water Environment and Korean Society of Water and Wastewater, 629 (2010).
  3. S. S. Im, K. C. Choi, K. H. Lee, Y. H. Lee, and J. Y. Lee, "A study of spatial distribution of organic matters in sumjin river", Proceedings of 2012 Spring Co-Conference of Korea Society on Water Environment and Korean Society of water and wastewater, 714 (2012).
  4. R. Bian, Y. Watanabe, N. Tambo, and G. Ozawa, "Removal of humic substances by UF and NF membrane systems", Wat. Sci. Tech., 40, 122, (1999).
  5. A. G. Fane and C. J. D. Fell, "A review of fouling and fouling control in ultrafiltraion", Desalination, 62, 117 (1987). https://doi.org/10.1016/0011-9164(87)87013-3
  6. L. F. Fu and B. A. Dempsey, "Modeling the effect of particle size and change on the structure of filter cake in ultrafiltration", J. Membr. Sci., 149, 221 (1998). https://doi.org/10.1016/S0376-7388(98)00169-0
  7. K. L. Jones and C. R O'Melia, "Ultrafilration of protein and humic substances; Effect of solution chemistry on fouling and flux decline", J. Membr. Sci., 193, 163 (2001). https://doi.org/10.1016/S0376-7388(01)00492-6
  8. Y. Wei and L. Z. Andrew, "Humic acid Fouling During Microfiltration", J. Membr. Sci., 157, 1 (1999). https://doi.org/10.1016/S0376-7388(98)00329-9
  9. J. G. Jacangelo, E. M. Aieta, K. E. Carns, E. W. Cummings, and J. Mallevialle, "Assessing hollow-filber ultrafiltration for particulate removal", J. AWWA, 87, 68 (1995). https://doi.org/10.1002/j.1551-8833.1995.tb06318.x
  10. AWWA Membrane Technology Reasearch Committee, 1998 Committee Report; Membrane Process. AWWA., 90(6), 91 (1998). https://doi.org/10.1002/j.1551-8833.1998.tb08457.x
  11. J. H. Chung, K. H. Choo, and H. S. Park, "Low Pressure Hybrid Membrane Processes for Drinking Water Treatment", Membrane Journal, 17(3), 167 (2007).
  12. H. N. Jang, "Advanced water treatment of river water by coagulation-membrane filtration process", Ph. D. Dissertation, Univ. of Kyunghee, Seoul, Korea (2009).
  13. C. W. Jung and H. J. Son, "The relationship between disinfection by-product formation and characteristics of natural organic matter in the raw water for drinking water", Journal of Korean Society of Envirnmental Engineers, 26, 457 (2004).
  14. Ksrry J. Howe and Mark M. Clark, "Fouling of microfiltration and ultrafiltration membranes by natural waters", Environ. Sci. Technol., 36, 3571 (2002). https://doi.org/10.1021/es025587r
  15. A. l. Schafer, A. G. Fane, and T. D. Waite, "Fouling effect on rejection in the membrane filtration of natural waters", Desalination, 131, 215 (2000). https://doi.org/10.1016/S0011-9164(00)90020-1
  16. S. Minegishi, N. Y. Jang, Y. Watanabe, S. Hirata, and G. Ozawa, "Fouling mechanism of hollow filber UF membrane with pretreatment by Coagulation/Sedimentation Process, Water Science and Technology", Water Supply, 1(4), 49, (2001).
  17. C. H Kim, J. L. Lim, H. S. Kim, and S. H. Kim, "Long term operation of ultrafiltration process using river-bed water", Proceedings of 2004 Co-Conference of Korea Society on Water Environment and Korean Society of Water and Wastewater, 601 (2004).
  18. J. Mallevaille, P. E. Odendaal, and M. R. Wiesner, Water Treatment Membrane Processes, McGraw-Hill (1996).