Trends in the Technology and Market of Membrane Bioreactors (MBR) for Wastewater Treatment and Reuse and Development Directions

하.폐수 처리용 MBR 분리막 기술 및 산업동향과 발전방향

  • Cho, Il Hyoung (Department of Environmental and Energy Systems Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University) ;
  • Kim, Ji Tae (Department of Environmental and Energy Systems Engineering, R&D Center for Advanced Technology of Wastewater Treatment and Reuse, Kyonggi University)
  • 조일형 (경기대학교 환경에너지시스템공학과 하.폐수고도처리기술개발사업단) ;
  • 김지태 (경기대학교 환경에너지시스템공학과 하.폐수고도처리기술개발사업단)
  • Received : 2012.12.04
  • Accepted : 2013.02.20
  • Published : 2013.02.28


The MBR technology has evolved rapidly over the past two decades with significant gains in performance and reliability, and reductions in costs. Membrane bioreactors (MBR) technology is widely recognised as offering a key option for enhanced wastewater treatment or reuse. The objective of this paper is then to critically review the remarkable achievement on the research and commercial applications of membrane bioreactor (MBR) technology and to present current and potential MBR markets on a global scope. This brief review of the technology incorporates five key aspects : 1) evolution of MBR practice, 2) the commercial technologies of MBRs, 3) the largest MBR installations globally (e.g. > $10,000m^3/day$), 4) MBR market growth, and 5) directions for future research. Finally, the development directions of economical, environmental and technical aspects in MBRs; 1) investment costs; 2) effluent water quality; 3) membrane materials and modules; 4) MBR equipment and treatment process; 5) operating costs (higher energy & chemical consumption); and 6) sustainability such as anaerobic MBRs in the coming years were addressed.

MBR 기술은 지난 20여 년 동안 처리성능과 효율성 그리고 비용절감 측면에서 빠른 속도로 발전하고 있다. 또한 안정적인 하수처리와 하수재이용관점에서 핵심기술로 널리 인식되고 있다. 본고에서는 MBR 기술의 개발과 상업적 응용에 관한 발전과정을 재조명하고 세계 시장의 전망을 제시하고자 한다. 주요 적용기술에 대해 다음 5가지 측면에서 검토하여 제시하였는데 1) MBR 기술의 진화, 2) MRBs의 상업용 기술, 3) 대용량 MBR 플랜트 설치 사례, 4) MBR 시장의 성장, 5) 기술의 발전방향 순으로 제시하였다. 마지막으로 MBRs에 대한 경제적, 환경적, 그리고 기술적 측면에서 향후 발전방향을 1) 초기투자비, 2) 처리 수질, 3) 분리막 소재/모듈, 4) MBR 장비와 공정, 5) 운영비용, 향후 6) 혐기성 MBRs 공정과 같은 차세대 기술 분야로 나누어 제시하였다.



Supported by : 환경부


  1. K. Sutherland, "The rise of membrane bioreactors", Filtration & Separation, 47(5), 14 (2010).
  2. S. Judd and C. Judd, "The MBR book: Principles and applications of membrane bioreactors for water and wastewater treatment", pp. 4-5, 2nd Edition Elsevier, Oxford, UK (2010).
  3. Ministry of Environment, "An study on the setup of master plan for water reuse", pp. 1-22, Ministry of environment (2010).
  4. A. Santos and S. Judd, "The commercial status of membrane bioreactors for municipal wastewater", Separation Science and Technology, 45, 850 (2010).
  5. C. Pierre, A. Zamir, and P. Jeff, "Hollow fiber membrane life in membrane bioreactors (MBR)", Desalination, 288, 145 (2012).
  6. British Broadcasting Corporation Research & Development (BBC), "Membrane bioreactors : Global markets", pp. 1-3. BCC Report Code MST047B, Report Category-Membrane & Separation Technology (2008).
  7. J. Srinivasan, "MBR still growing in EU wastewater treatment market", Water and Waste International, 22, 43 (2007).
  8. Global Industry Analysis (GIA), "Global membrane bioreactors market to reach US $ 888 million by 2017", pp. 1-2, Available at: (2011).
  9. Feature, "Global MBR market forecast to reach $888 million by 2017", Membrane Technology, 1, 1 (2012).
  10. WaterWorld, "Membrane multiplier : MBR set for global growth", Available at : - multiplier-mbr.html (2008).
  11. D. F. Ayala, V. Ferre, and S. J. Judd, "Membrane life estimation in full-scale immersed membrane bioreactors", J. Membr. Sci., 378, 95 (2011).
  12. T. Asano, F. L. Burton, H. L. Leverenz, R. Tsuchihashi, and G. Tchobanoglous. "Water Reuse: Issues, Technology and Applications", pp. 1-10, McGraw-Hill, New York, USA (2007).
  13. I. Bemberis, P. J. Hubbard, and F. B. Leonard, "Membrane sewage treatment systems potential for complete wastewater treatment", Proc. Amer. Soc. Agric. Eng., 71, 1 (1971).
  14. K. Yamamoto, M. Hiasa, T. Mahmood, and T. Matsuo, "Direct solid-liquid separation using hollow fiber membrane in an activated-sludge aeration tank", Water Science Technology., 21, 43 (1989).
  15. Water Environment Federation (WEF), "Membrane bioreactors, WEF Manual of Practice", 36, 1 (2011).
  16. S. Judd and C. Judd, "The MBR book : Principles and applications of membrane bioreactors for water and wastewater treatment", pp. 1-5, Oxford OX5, UK, Elsevier (2006).
  17. T. Buer and J. Cumin, "MBR module design and operation", Desalination, 250, 1073 (2010).
  18. W. Doyen, W. Mues, B. Molenberghs, and B. Cobben, "Spacer fabric supported flat-sheet membranes : A new era of flat-sheet membrane technology", Desalination, 250, 1078 (2010).
  19. G. Pearce, "Introduction to membranes : Membrane selection", Filtration & Separation, 44(3), 35 (2007).
  20. G. Pearce, " Introduction to membranes : Filtration for water and wastewater treatment", Filtration & Separation, 44(2), 24 (2007).
  21., January 1 (2012).
  22. January 1 (2010).
  23. October 5 (2012).
  24. October 5 (2012).
  25. Jun 17 (2012).
  26. October 5 (2012).
  27. July 20 (2012)
  28. G. Pearce, "Introduction to membranes - MBRs: Manufacturers' comparison: Part 1", Filtration and Separation, 45, 32 (2008).
  29. May 23 (2012).
  30. J. T. Kim, "Trends of domestic and international for technology and market in wastewater treatment", pp. 1-200, Research report (version 1), R&D Center for Advanced Technology of Wastewater Treatment and Reuse Publishing (2011).
  31. Korean Intellectual Property Office (KIPO), "Patent Trends in the advanced technology of energy & resources - saving recycling in wastewater treatment plant", pp. 1-50, Research report, Available at : (2010).
  32. J. T. Kim, H. Y. Hwang, B. P. Hong, H, and S. Byun, "The background and direction of r&d project for advanced technology of wastewater treatment and reuse", Membrane Journal, 21(3), 277 (2011).
  33. Frost & Sullivan, "Sustainable water treatment tech nologies in the 2020 global water market", pp. 1-20, Available at: (2012).
  34. The Freedonia Group, "World membrane separation technologies to 2015 - market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends", pp. 1-5, Beta Drive Cleveland, Ohio (2012).
  35. J. W. Mulder, "Operational experiences with the hybrid MBR Heenvliet, a smart way of retrofitting", Book of Proceedings of final MBR Network workshop, 31 March.1. April, Berlin, Germany (2009).
  36. A. Santos, W. Ma, and S. J. Judd, " Membrane bioreactors : Two decades of research and implementation", Desalination, 273, 148 (2011).
  37. F. Meng, S. R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, "Recent advances in membrane bioreactors (MBRs) : Membrane fouling and membrane material", Water Research, 43, 1489 (2009).
  38. F. I. Hai and K. Yamamoto, "Membrane Biological Reactors", Faculty of Science-Papers, pp. 571-613 (2011). Available at: hai/6.
  39. W. D. Wildea, M. Richard, B. Lesjeanc, and A. Tazi-Pain, "Towards standardisation of the MBR technology?", Desalination, 231, 156 (2008).
  40. Y. Yoon, J. Ryu, J, Oh, B. G, Choi, and S. A. Snyder, "Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River", Science of The Total Environment, 408, 3(1), 636 (2010).
  41. N. Tadkaew, F. I. Hai, J. A. McDonald, S. J. Khan, and L. D. Nghiema, "Removal of trace organics by MBR treatment : The role of molecular properties", Water Research, 45, 2439 (2011).
  42. J. T. Kraemer, A. L. Menniti, Z. K. Erdal, T. A. Constantine, B. R. Johnson, G. T. Daigger, and G. V. Crawford, "A practitioner's perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment", Bioresource Technology, 122, 1 (2012).
  43. J. L. Lim, K. H. Lee, Y. J. Lee, and J. Y. Park, "Optimum coagulation conditions for ceramic microfiltration membrane process", Membrane Journal, 22(2), 135 (2012).
  44. V. Iversen, R. Mehrez, R. Y. Horng, C. H. Chen, F. Meng, A. Drews, B. Lesjean, M. Ernst, M., and Jekel, M, "Kraume fouling mitigation through flocculants and adsorbents addition in membrane bioreactors : comparing lab and pilot studies", J. Membr. Sci., 345, 21 (2009).
  45. H. H. Ngo, W. Guo, and W. Xing. "Evaluation of a novel sponge-submerged membrane bioreactor (SSMBR) for sustainable water reclamation", Bioresource Technology, 99, 2429 (2008).
  46. E. Brauns, D. Teunckens, C. Dotremont, E. van Hoof, W. Doyen, and D. Vanhencke, "Dead-end filtration experiments on model dispersions: comparison of VFM data and the Kozeny-Carman model", Desalination, 177, 303 (2005).
  47. R. Mehrez, M. Ernst, and M. Jekel, "Development of a continuous protein and polysaccharide measurement method by Sequential Injection Analysis for application in membrane bioreactor systems", Water Science Technology, 56(6), 163 (2007).
  48. A. P. S. Yeo, A. W. K. Law, and A. G. Fane, "The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry", J. Membr. Sci., 304, 125 (2007).
  49. A. Sofia, W. J. Ng, and S. L. Ong, "Engineering design approaches for minimum fouling in submerged MBR Desalination", 160, 67 (2004).
  50. B. Thomas and J. Cumin, "MBR module design and operation", Desalination, 250, 1073 (2010).
  51. P. Le-Clech, A. Fane, G. Leslie, and A. Childress, "MBR focus: the operators' perspective", Filtration & Separation, 45(5), 20 (2008).
  52. B. Swinton, "Membrane technology", Water, 36 (2005).
  53. G. Pearce, "Introduction to membranes-MBRs : Manufacturers' comparison : part 1", Filtration & Separation, 45(2), 28 (2008).
  54. G. Pearce, "Introduction to membranes : An introduction to membrane bioreactors", Filtration & Separation, 45(1), 32 (2008).
  55. Scopus. Scopus key-word searches and abstracts. Retrived from : February (2012).
  56. H. J. Lin, W. J. Gao, K. T. Leung, B. Q. Liao, and H. J. Lin, "Characteristics of different fractions of microbial flocs and their role in membrane fouling", Water Science Technology, 63(2), 262 (2011a).
  57. H. Lin, B. LiaO, J. Chen, W. Gao, L. Wang, and F. Wang, "New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge", Bioresource Technology, 102(3), 2373 (2011b).
  58. H. J, Lin, K. Xie, B. Mahendran, D. M. Bagley, K. T. Leung, and S. N. Liss, "Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor", J. Membr. Sci., 361(1), 126 (2010).
  59. Y. Kim, D. W. Jun, S. K. Yoon, C. H. Chang, J. H. Bae, K. S. Yoo, and J. H. Kim. "Effect of cross-flow velocity and tmp on membrane fouling in thermophilic anaerobic membrane bioreactor treating food waste leachate", Membrane Journal, 21(4), 135 (2011).
  60. J. B. Gimenez, N. Marti, J. Ferrer, and A. Seco, "Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate- rich urban wastewater : Evaluation of methane losses with the effluent", Bioresource Technology, 118, 67 (2012).
  61. Y. Tao, D. W. Gao, Y. Fu, W. M. Wu, and N. O. Ren, "Impact of reactor configuration on anammox process start-up: MBR versus SBR", Bioresource Technology, 104, 73 (2012).
  62. M. Kurihara, "Government funded programs worldwide, the japanese "mega-ton water system" project", The 3rd Osmosis Membrane Summit, April 26 (2012).