Increase of Recovery Ratio by Two Stage Membrane Process (the Pressurized PVDF Membrane Followed by Submerged PE Membrane)

PVDF 가압식과 PE 침지식 분리막을 결합한 2단 막여과 공정의 성능검토 및 회수율 증대 방안 연구

  • 김준현 (인천광역시 상수도사업본부 수질연구소) ;
  • 문백수 (인천광역시 상수도사업본부 수질연구소) ;
  • 장홍진 ((주) 에코니티) ;
  • 김진호 ((주) 에코니티) ;
  • 김병석 ((주) 에코니티)
  • Received : 2012.12.14
  • Accepted : 2013.02.18
  • Published : 2013.02.28

Abstract

Membrane filtration processes are increasingly popular for drinking water treatment that requires high quality of water. But pre-treatment system (Coagulation/Flocculation/Sedimentation) requires increased footprint and installation cost. In addition, 5~10% of the concentrate are formed. In this study, the pressurized PVDF membrane (ECONITY Co., Ltd.) system was tested with surface water (Han River, South Korea) without pre-treatment. As a result, permeate flux was operated between 1 m/d and 2.4 m/d (at $25^{\circ}C$) without chemical cleaning for one year and membrane permeate turbidity was maintained stably under 0.05 NTU regardless of raw water turbidity. And we studied application of concetrate treatment of pressurized PVDF membrane by submerged PE membrane (ECONITY Co., Ltd.). As a result, we increased recovery of total treatment process to 99.5%.

현재 분리막 여과 공정은 정수처리에서 많은 관심을 받고 있다. 하지만, 분리막의 효율적인 운영을 위하여 '혼화/응집(/침전)' 등의 전처리 시설 설치로 인한 부지면적 및 비용증가와 5~10%의 배출수 문제가 추가적으로 발생한다. 그래서 본 연구에서는 전처리 공정 없이 지표수(한강)에 대하여 가압식 PVDF 분리막[(주)에코니티]으로 운전하여 성능을 검토하였으며 그 결과 1년 동안 화학적 세정 없이 여과 flux가 1~2.4 m/d (at $25^{\circ}C$)로 운전되었고, 유입원수의 탁도와 상관없이 분리막 처리수의 탁도는 0.05 NTU 이하로 안정되게 유지되었다. 또한, 회수율 제고를 위하여 1개월 동안 가압식 배출수(역세수 + 배수)를 침지식 PE 분리막[(주)에코니티]으로 연계하여 2단 막여과 운영을 한 결과 전체 공정 회수율을 99.5%까지 증가시킬 수 있었다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. B. G. Lee, K. S. Lee, K. K. Lee, S. H. Kang, and S. H. Kang, "Characteristics of Long Term Period MF Membrane Pilot Plant Operation for Replacement of Sand Filtration", Korean Society on Water Environment, B-3 (2007).
  2. J. D. Lee, S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee, J. W. Kwak, "Effect of Coagulation Conditions on Membrane Filtration characteristics in Coagulation-Microfiltration Process for Water Treatment", Environmental Science & Technology, 34, 17, pp. 3780-3788 (2000). https://doi.org/10.1021/es9907461
  3. S. Y. Moon, S. Y. Cho, J. E. Park, and C. H. Kim, "Operation result of submerged membrane system for membrane discharged water", Korean Society on Water Environment, P-44 (2006).
  4. B. V. Bruggen, L. Lejon, and C. Vandecasteele, "Reuse, Treatment, and Discharge of the Concentrate of Pressure-Driven Membrane Processes", Environmental Science & Technology, 37, 17, pp. 3733 -3738 (2003). https://doi.org/10.1021/es0201754
  5. S.-Y. Moon, S.-Y. Cho, J.-E. Park, and C.-H. Kim, "Operation result of submerged membrane system for membrane discharged water", Korean Society on Water Environment, P-44 (2006).
  6. C.-H. Heo, K.-M. Lee, J.-H. Kim, and S. S. Kim, "Preparation of PVDF membrane by thermally-induced phase separation", Membrane Journal, 9, 1 (2007).
  7. M. S. Park, J. H. Kim, M. S. Jang, and S. S. Kim, "Preparation of porous PVDF hollow fiber membranes by hybrid process of the TIPS and stretching", International Conference on Membranes for Green Growth, Nov. 4-5 (2010).
  8. J. H. Min, N. S. Gil, J. H. Kim, S. S. Kim, and M. S. Jang, "Performance tests of the PVDF hollow fiber membrane prepared by combination of the TIPS and post-stretching process", AMS6/IMTEC10, Nov. 22-26 (2010).
  9. J. H. Kim, S. S. Kim, M. S. Park, and M. S. Jang, "Effect of precursor properties on the preparation of polyethylene hollow fiber membranes by stretching", J. Membr. Sci., 318, 201 (2008). https://doi.org/10.1016/j.memsci.2008.02.050
  10. L. Lin, C. Huang, J. R. Pan, and Y. S. Wang, "Fouling mitigation of a dead-end microfiltration by mixing-enhanced preoxidation for Fe and Mn removal from groundwater", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 419, 87 (2013). https://doi.org/10.1016/j.colsurfa.2012.11.053
  11. R. S, M. J. R, "Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence : a review", Science of The Total Environment, 321, 21 (2004). https://doi.org/10.1016/j.scitotenv.2003.05.001