Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst Loaded Polyethersulfone Beads : Effect of Nitrogen Back-flushing Period and Time

관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성 수처리 : 질소 역세척 주기와 시간의 영향

  • Hong, Sung Tack (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Park, Jin Yong (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 홍성택 (한림대학교 환경생명공학과) ;
  • 박진용 (한림대학교 환경생명공학과)
  • Received : 2013.02.16
  • Accepted : 2013.02.25
  • Published : 2013.02.28

Abstract

The $N_2$ back-flushing period (FT) and time (BT) were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide ($TiO_2$) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As decreasing FT and increasing BT, $R_f$ decreased and J increased, and finally the maximum $V_T$ could be acquired at FT 10 min and BT 30 sec. In FT effect experiment, treatment efficiencies of turbidity and dissolved organic matters (DOM) were the highest at no back-flushing (NBF) because of dramatic membrane fouling. As result of BT effect, the treatment efficiencies were the maximum at BT 30 sec, which was different with the FT result. Because the photocatalyst beads could be cleaned effectively as decreasing FT and increasing BT, turbidity treatment efficiency increased a little from 95.4% to 97.5% as decreasing FT, and from 95.9% to 98.5% as increasing BT. Also DOM treatment efficiency increased from 70.8% to 80.6% as decreasing FT, and from 75.1% to 85.8% as increasing BT. The optimal condition, where the treatment efficiencies and $V_T$ were the maximum, should be FT 10 min and BT 30 sec in our experimental range.

고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄($TiO_2$) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 질소 역세척 주기(FT)와 시간(BT)의 최적운전조건을 막오염에 의한 저항($R_f$) 및 투과선속(J), 총여과부피($V_T$)의 관점에서 고찰하였다. FT가 짧고 BT가 길수록, $R_f$는 감소하고 J가 증가하여 결국 FT 10분과 BT 30초에서 최대 $V_T$를 얻었다. $F_T$ 영향 실험 결과 NBF (no back-flushing)에서 막오염이 급격히 진행되어 탁도 및 용존유기물의 처리효율이 가장 높게 나타났다. BT 영향 결과에서는, FT 실험과는 다르게 BT 30초에서 최대 처리효율을 보였다. 결과적으로 FT가 감소하고 BT가 증가할수록 광촉매 첨가 구의 세척이 효율적으로 일어나, 탁도 처리효율은 FT가 짧을수록 95.4%에서 97.5%로, BT가 길수록 95.9%에서 98.5%로 다소 증가하였다. 또한 유기물 처리효율은 FT가 짧을수록 70.8%에서 80.6%로, BT가 길수록 75.1%에서 85.8%로 증가하였다. 본 실험 범위에서 처리효율과 $V_T$가 최대인 최적 질소 역세척 조건은 FT 10분과 BT 30초로 판단된다.

Keywords

References

  1. H. Zhang, X. Quan, S.Chen, H, Zhao, and Y. Zhao, "Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water", Sep. Pur. Tech., 50, 147 (2006). https://doi.org/10.1016/j.seppur.2005.11.018
  2. H. Yamashita, H. Nakao, M. Takeuchi, Y. Nakatani, and M. Anpo, "Coating of $TiO_2$ photo catalysts on super-hydrophovic porous teflon membrane by an ion assisted deposition method and their selfcleaning performanc", Nucl. Instr. Meth. Phys. Res., 206, 898 (2003). https://doi.org/10.1016/S0168-583X(03)00895-4
  3. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/microfiltration system for natural organic matter removal", Membrane Journal, 14, 149 (2004).
  4. J. U. Kim, "A study on drinking water treatment by using ceramic membrane filtration", Master Disserationm, Yeungnam Univ., Daegu, Korea (2004).
  5. C. K. Choi, "Membrane technology", Chem. Ind. & Tech., 3, 264 (1985).
  6. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  7. T. H. Bae and T. M. Tak, "Effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 49, 1 (2005).
  8. R. Molinari, C. Grande, and E. Drioli, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  9. I. R. Bellobono, B. Barni, and F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by $PHOTHOPERM^{TM}$ membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  10. R. Molinari, M. Mungari, E. Drioli, A. D. Paola, V. Loddo, L. Palmisano, and M. Schiavello, Study on a photocatalytic membrane reactor for water purification, Catal. Today, 55, 71 (2000). https://doi.org/10.1016/S0920-5861(99)00227-8
  11. R. Molinari, C. Grande, E. Drioli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catal. Today, 67, 273 (2001). https://doi.org/10.1016/S0920-5861(01)00314-5
  12. R. Molinari, L. Palmisano, E. Drioli, and M. Schiavello, "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", J. Membr. Sci., 206, 399 (2002). https://doi.org/10.1016/S0376-7388(01)00785-2
  13. J. Kleine, K. V. Peinemann, C. Schuster, and H. J. Warnecke, "Multifunctional system for treatment of wastewaters from adhesive-producing industries : separation of solids and oxidation of dissolved pollutants using doted microfiltation membranes", Chem. Eng. Sci., 57, 1661 (2002). https://doi.org/10.1016/S0009-2509(02)00043-X
  14. K. Karakulski, W. A. Morawski, and J. Grzechulska, "Purification of bilge water by hybrid ultrafiltration and photocatalytic process", Sep. Pur. Tech., 14, 163 (1998). https://doi.org/10.1016/S1383-5866(98)00071-9
  15. W. Xi and S.U. Geissen, "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Wat. Res., 35, 1256 (2001). https://doi.org/10.1016/S0043-1354(00)00378-X
  16. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  17. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  18. S. C. Gao and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst : 1. Effects of photocatalyst and water-back-flushing condition", Membrane Journal, 21, 127 (2011).
  19. M. Cheryan, "Ultrafiltraion handbook", pp. 89-93, Technomic Pub. Co., Pennsylvania (1984).
  20. J. Y. Park and G. S. Lee, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and ceramic microfiltration: effect of organic materials in water-back-flushing", Membrane Journal, 21, 72 (2011).
  21. A. Figoli, G. De Luca, E. Longavita, and E. Drioli, "PEEKWC capsules prepared by phase inversion technique : a morphological and dimensional study", Sep. Sci. Tech., 42, 2809 (2007). https://doi.org/10.1080/01496390701558284
  22. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of $N_2$-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  23. J. Y. Park and S. H. Lee, "Effect of waterback- flushing in advanced water treatment system by tubular alumina ceramic ultrafiltration membrane", Membrane Journal, 19, 194 (2009).
  24. H. C. Lee, J. H. Cho, and J. Y. Park, "Effect of water-back-flushing time and period in advanced water treatment system by ceramic microfiltration", Membrane Journal, 18, 26 (2008).
  25. J. Y. Yun, "Removal of natural organic matter in Han River water by GAC and $O_3$/GAC", Master Dissertation, Univ. of Seoul, Seoul, Korea (2007).
  26. J. Y. Park and J. S. Han, "Advanced water treatment of high turbidity source by hybrid process of ceramic ultrafiltration and photocatalyst : 3. effect of organic matters at $N_2$ back-flushing", Membrane Journal, 22, 171 (2012).
  27. J. Y. Park and S. W. Park, "Advanced water treatment of high turbidity source by hybrid process of photocatalyst and ceramic microfiltration : effect of water back-flushing period", Membrane Journal, 22, 243 (2012).