Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (II) : Dead-end Nanofiltration of PCB Etching Waste Solution Containing Copper Ion

나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(II) : 구리이온을 함유한 PCB 폐에칭액의 Dead-end 나노여과

  • Nam, Sang-Won (Department of Engineering Chemistry, College of Engineering, Chungbuk National University) ;
  • Jang, Kyung-Sun (Research & Development Center of SCT Co. Ltd.) ;
  • Youm, Kyung-Ho (Department of Engineering Chemistry, College of Engineering, Chungbuk National University)
  • 남상원 (충북대학교 공과대학 공업화학과) ;
  • 장경선 ((주)에스씨티 기술연구소) ;
  • 염경호 (충북대학교 공과대학 공업화학과)
  • Received : 2013.02.19
  • Accepted : 2013.02.26
  • Published : 2013.02.28

Abstract

In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a dead-end membrane filtration laboratory system. The pure water flux was increased with the increasing storage time in sulfuric acid solution and lowering pH of acid solution because of the enhancement of NF membrane damage by sulfuric acid. The permeate flux of acid solution was decreased with the increasing copper ion concentration. Total rejection of copper ion was decreased with the increasing storage time in sulfuric acid solution and copper ion concentration, and lowering the pH of acid solution. The total rejection of copper ion was decreased from initial 37% to 15% minimum value.

본 연구는 인쇄회로기판(PCB) 제조 시 에칭공정에서 발생되는 구리이온($Cu^{+2}$)을 고농도로 함유한 황산 폐에칭액을 NF 막분리법을 사용하여 에칭액 회수와 구리이온 처리를 효율적으로 수행하기 위한 NF 막여과 공정의 운전 조건을 설정하기 위한 기본 자료를 확보하는데 있다. 이를 위해 미국 Koch사의 SelRO MPS-34 4040 NF 막을 대상으로 구리이온을 고농도(5~25 g/L)로 함유한 모의 황산 폐에칭액의 회분식(dead-end) 나노여과 실험을 수행하여 투과 플럭스와 구리이온의 총괄 배제도를 측정하였다. 이 결과 황산용액에의 막 보관기간이 길수록, 황산용액의 pH가 낮을수록 황산에 의한 NF 막의 손상이 더 크게 발생하여 순수 투과 플러스가 증가하였다. 황산 폐에칭액의 투과 플럭스는 황산용액 내 구리이온의 농도가 증가할수록 막 표면에의 구리이온 농축(농도분극)의 증가에 따라 감소하였으며, 구리이온의 배제도는 구리이온의 농도가 높을수록, pH가 낮을수록, 황산용액 내의 막 보관기간이 길수록 낮아져 초기 37%에서 최소 15% 수준으로까지 감소하였다.

Keywords

References

  1. J. W. Patterson, "Industrial waste reduction", Environ. Sci. Technol., 23, 1032 (1989). https://doi.org/10.1021/es00067a609
  2. N. Meunier, J. Laroulandie, J. F. Blais, and R. D. Tyagi, "Cocoa shells for heavy metal removal from acidic solutions", Bioresource Technol., 90, 255 (2003). https://doi.org/10.1016/S0960-8524(03)00129-9
  3. J. Wisniewski and S. Suder, "Water recovery from etching effluents for the purpose of rinsing stainless steel", Desalination, 101, 245 (1995). https://doi.org/10.1016/0011-9164(95)00027-Y
  4. T. Mohammadi, A. Razmi, and M. Sadrzadeh, "Effect of operating parameters on $Pb^{+2}$ separation from wastewater using electrodialysis", Desalinatrion, 167, 379 (2004). https://doi.org/10.1016/j.desal.2004.06.150
  5. K. H. Lee, "Design and application of membrane separation processes", Membrane Journal, 3(2), 14 (1993).
  6. M. Mulder, "Basic principles of membrane technology", 2nd Ed., Kluwer Academic Publishers (1996).
  7. R. W. Baker, "Membrane technology and applications", 2nd Ed., John Wiley & Sons (2004).
  8. A. E. Childress and M. Elimelech, "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 199, 253 (1996).
  9. A. E. Yaroshcuk, "Rejection mechanisms of NF membranes", Membrane Technol., 100, 9 (1998).
  10. J. Tanninen, S. Platt, A. Weis, and M. Nystrom, "Long-term acid resistance and selectivity of NF membranes in very acidic conditions", J. Membr. Sci., 240, 11 (2004). https://doi.org/10.1016/j.memsci.2004.04.006
  11. C. M. Choi, Y. H. Choi, J. H. Lee, H. J. Kim, N. J. Kim, B. J. Park, Y. K. Joo, J. S. Kang, and Y. K. Paik, "A Study on the fouling of ultrafiltration membranes used in the treatment of an acidic solution in a circular cross-flow filtration bench", Membrane Journal, 19(3), 252 (2009).
  12. H. S. Shin, C. D. Jin, and K. H. Youm, "Recycling of acid etching waste solution containing heavy metals by nanofiltration (I) : Evaluation of acid stability of commercial nanofiltration membranes", Membrane Journal, 19(4), 317 (2009).
  13. A. G. Fane, Seminar Materials on "Fouling in pressure-driven membrane processes", July 4-5, Lappeenranta University of Technology, Finland (1994).
  14. I. H. Kim, E. H. Ji, J. W. Rhim, and S. I. Cheong, "Studies on the fouling reduction through the coating of poly (vinyl alcohol) on polyamide reverse osmosis membrane surfaces", Membrane Journal, 22(4), 272 (2012).