DOI QR코드

DOI QR Code

Determination of Residue Levels of Ethyl Carbamate in Alcoholic Beverages by Gas Chromatography/Tandem Mass Spectrometry (GC/MS/MS)

가스크로마토그래피/질량분석기(GC/MS/MS)를 이용한 주류 중 에틸카바메이트 잔류량 조사

  • Kim, Dong-Ho (National Agricultural Products Quality Management Service) ;
  • Jang, Han-Sub (National Agricultural Products Quality Management Service) ;
  • Choi, Gu-Il (National Agricultural Products Quality Management Service) ;
  • Kim, Hyun-Jung (National Agricultural Products Quality Management Service) ;
  • Kim, Ho-Jin (National Agricultural Products Quality Management Service) ;
  • Kim, Hyo-Lin (National Agricultural Products Quality Management Service) ;
  • Kim, Keun-Sung (Dept. of Food Science and Technology, Chung-Ang University)
  • 김동호 (국립농산물품질관리원 시험연구소) ;
  • 장한섭 (국립농산물품질관리원 시험연구소) ;
  • 최규일 (국립농산물품질관리원 시험연구소) ;
  • 김현정 (국립농산물품질관리원 시험연구소) ;
  • 김호진 (국립농산물품질관리원 시험연구소) ;
  • 김효린 (국립농산물품질관리원 시험연구소) ;
  • 김근성 (중앙대학교 식품공학과)
  • Received : 2012.09.19
  • Accepted : 2013.02.25
  • Published : 2013.03.31

Abstract

Ethyl carbamate (EC) is a contaminant generated in the fermentation processes of various fermented foods. In this study, residue levels of EC in 95 alcoholic beverage samples were determined by using Gas Chromatography/Tandem Mass Spectrometry (GC/MS/MS). All the samples were purified by a liquid-liquid extraction (LLE) method using dichloromethane. The LLE method enables an improvement in time and cost to detection and specificity over the conventional extraction methods. The limits of detection and quantification (LOD and LOQ) to analyze EC were 1.3 and 4.0 ng/mL, respectively. The recovery rates of EC were ranged from 90.0 to 97.5% at the levels of 50, 100, and 500 ug/L. Among traditional grain-based alcoholic beverage samples (n = 34), the average residue levels of EC in takju, yakju, and cheongju were 0.63, 7.01, and 14.11 ug/L, respectively. Among fruit-based alcoholic beverage samples (n = 48), those of EC in japanese apricot spirits, bokbunjaju, grape wines, and other fruit wines were 79.18, 1.66, 2.64, and 2.39 ug/L, respectively. Among distilled or diluted alcoholic beverage samples (n = 13), those of EC in soju (distilled or diluted), general distillates, liquors, and brandies were 0, 3.30, 8.20, and 8.52 ug/L, respectively. Therefore, this study reports that the residue levels of EC in the alcoholic beverages, distributed in the current domestic markets, did not reach its maximum allowed levels of 30 and 400 ug/L established for grape and fruit wines in Canada, respectively.

국내 유통 주류 95점에 대하여 에틸카바메이트 잔류실태 조사를 실시하였다. 탁주, 약주, 청주, 과실주를 비롯하여 소주, 브랜디 그리고 에틸카바메이트 잔류가 많이 보고되고 있는 리큐르 등을 대상으로 하였다. 액액분배를 통하여 정제하였으며, GC/MS/MS 분석법을 정립하였다. 카트리지(cartridge)나 농축 과정이 없기 때문에 식품공전에 등재되어 있는 GC/MS 분석법보다 분석시간이나 소요비용 면에서 매우 효율적이었다. 정성한계는 1.3 ug/L이었으며, 정량한계는 4.0 ug/L이었다. 탁주, 약주, 청주에 대하여 각각 0.63, 7.01, 14.11 ug/L의 평균 잔류량을 나타내 캐나다의 청주 허용기준 200 ug/L나 약주, 청주에서 논의되고 있는 허용기준치 200 ug/L와 비교하여 보았을 때 안전한 수준인 것으로 나타났다. 복분자주, 포도주에서는 각각 평균 1.66, 2.64 ug/L 검출되어 현재 캐나다, 체코에서 포도주 허용기준치로 설정되어 있는 30 ug/L와 비교하여 보았을 때 역시 안전한 것으로 나타났다. 과실주 중 매실주의 경우 평균 79.18 ug/L로 본 연구를 통하여 평가된 모든 주종 중 가장 높은 잔류량을 나타내었으나, 외국의 다른 유사 주종에 대한 허용기준치 (예로서 캐나다의 경우 400 ug/L 과실 브랜디)와 비교하여 보았을 때 안전한 수준으로 평가할 수 있었다. 증류식 소주, 일반증류주, 리큐르도 논의되고 있는 기준치와 비교하여 보았을 때 안전한 것으로 조사되었다. 이러한 조사결과는 우리술의 에틸카바메이트 잔류실태가 위험한 수준이 아니라는 근거 자료로 활용할 수 있을 것이며, 향후 이러한 유해물질의 지속적인 잔류조사 및 위해평가를 통하여 우리 술 및 전통발효식품의 품질 및 안전성을 확보해 나가야 할 것이다.

Keywords

References

  1. Xu, X., Gao, Y., Cao, X., Wang, X., Song, G., Zhao, J. and Hu, Y.: Derivatization followed by gas chromatography-mass spectrometry for quantification of ethyl carbamate in alcoholic beverages. J. Sep. Sci., 35, 804-810 (2012). https://doi.org/10.1002/jssc.201100526
  2. Ubeda, C., Balsera, C., Troncoso, A.M., Callejon, R.M. and Morales, M.L.: Validation of an analytical method for the determination of ethyl carbamate in vinegars. Talanta, 89, 178-182 (2012). https://doi.org/10.1016/j.talanta.2011.12.012
  3. Liu, Y.P., Dong, B., Qin, Z.S., Yang, N.J., Lu, Y., Yang, L.X., Chang, F.Q. and Wu, Y.N.: Ethyl carbamate levels in wine and spirits from markets in Hebei Province, China. Food Addit. Contam. Part B, 4, 1-5 (2011). https://doi.org/10.1080/19393210.2011.557783
  4. Lim, H.S. and Lee, K.G.: Development and validation of analytical methods for ethyl carbamate in various fermented foods. Food Chem., 126, 1373-1379 (2011). https://doi.org/10.1016/j.foodchem.2010.11.110
  5. Alberts P., Stander, M.A. and De Villiers, A.: Development of a novel solid-phase extraction, LC-MS/MS method for the analysis of ethyl carbamate in alcoholic beverages: application to South African wine and spirits. Food Addit. Contam. Part A, 28, 826-839 (2011). https://doi.org/10.1080/19440049.2011.568010
  6. Stephen, W,C,C., Ka, P.K. and Benedict, L.S.C.: Determination of Ethyl Carbamate in Fermented Foods by GC-HRMS. Chromatographia, 72, 571-575 (2010). https://doi.org/10.1365/s10337-010-1694-7
  7. Tang, A.S.P., Chung, S.W.C., Kwong, K., Xiao, Y., Chen, M.Y.Y., Ho, Y.Y. and Ma, S.W.Y.: Ethyl carbamate in fermented foods and beverages: dietary exposure of the Hong Kong population in 2007-2008. Food Addit. Contam. Part B, 4, 195-204 (2011). https://doi.org/10.1080/19393210.2011.605524
  8. Hasnip, S., Crews, C., Potter, N., Christy, J., Chan, D., Bondu, T., Matthews, W., Walters, B. and Patel, K.: Survey of ethyl carbamate in fermented foods sold in the United Kingdom in 2004. J. Agric. Food Chem., 55, 2755-2759 (2007). https://doi.org/10.1021/jf063121c
  9. Hong, K.P., Kang, Y.S., Jung, D.C., Park, S.R., Yoon, J.H., Lee, S.Y., Ko, Y.S., Kim, S.H., Ha, S.D., Park, S,K. and Bae, D.H.: Exposure to ethyl carbamate by consumption of alcoholic beverages imported in korea. Food Sci. Biotechnol., 16, 975-980 (2007).
  10. Weber, J.V. and Sharypov, V.I.: Ethyl carbamate in foods and beverages. Environ. Chem., 7, 233-247 (2009). https://doi.org/10.1007/s10311-008-0168-8
  11. Zhang, Y. and Zhang, J.: Optimization of headspace solidphase microextraction for analysis of ethyl carbamate in alcoholic beverages using a face-centered cube central composite design. Anal. Chim. Acta., 627, 212-218 (2008). https://doi.org/10.1016/j.aca.2008.08.014
  12. Lachenmeier, D.W., Nerlich, U. and Kuballa, T.: Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography- tandem mass spectrometry. J. Chromatogr. A, 1108, 116-120 (2006). https://doi.org/10.1016/j.chroma.2005.12.086
  13. Fu, M.L., Liu, J., Chen, Q.H., Liu, X.J., He G.Q. and Chen J.C.: Determination of ethyl carbamate in Chinese yellow rice wine using high-performance liquid chromatography with fluorescence detection. Food Sci. Technol., 45, 1297-1302 (2010). https://doi.org/10.1111/j.1365-2621.2010.02279.x
  14. De Melo Abreu, S., Alves, A., Oliveira, B. and Herbert, P.: Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC-FLD with GC-MS methods. Anal. Bioanal. Chem., 382, 498-503 (2005). https://doi.org/10.1007/s00216-005-3061-3
  15. Edit, D., Attila, G., va, S.B. and Mihály, D.: Determination of ethylcarbamate in pálinkaspirits by liquidchromatographyelectrospray tandem mass spectrometry after derivatization. Food Res. Int., 43, 2452-2455 (2010). https://doi.org/10.1016/j.foodres.2010.09.014
  16. 배동호, 강윤석, 홍권표, 정동채, 윤지호, 이성용, 박새롬: 식품 중 에틸카바메이트 모니터링 및 위해 평가, 식품의약품안전청 연구용역과제, (2007).

Cited by

  1. Probabilistic dietary exposure to ethyl carbamate from fermented foods and alcoholic beverages in the Korean population vol.34, pp.11, 2017, https://doi.org/10.1080/19440049.2017.1364433
  2. Detection of ethyl carbamate in liquors using surface-enhanced Raman spectroscopy vol.5, pp.12, 2018, https://doi.org/10.1098/rsos.181539