DOI QR코드

DOI QR Code

Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

  • Luan, Xinhong (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Cao, Zhongzan (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Xu, Wen (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Gao, Ming (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Wang, Laiyou (Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center) ;
  • Zhang, Shuwei (Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center)
  • 투고 : 2013.02.01
  • 심사 : 2013.03.22
  • 발행 : 2013.07.01

초록

Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH) method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction); the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR). The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1) and Stathmin-2 (STMN2) were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.

키워드

참고문헌

  1. Advis, J. P., J. W. Simpkins, H. T. Chen, and J. Meites. 1978. Relation of biogenic amines to onset of puberty in the female rat. Endorinology 103:11-16. https://doi.org/10.1210/endo-103-1-11
  2. Bates, M. D., and P. M. Conn. 1984. Calcium mobilization in the pituitary gonadotrope: relative roles of intra-and extracellular sources. Endorinology 115:1380-1385. https://doi.org/10.1210/endo-115-4-1380
  3. Chen, H., G. Mueller, and J. Meites. 1974. Effects of L-dopa and somatostatin on suckling-induced release of prolactin and GH. Endocr. Res. 1:283-291.
  4. Diatchenko, L., Y. F. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov, and P. D. Siebert. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93:6025-6030. https://doi.org/10.1073/pnas.93.12.6025
  5. Ding, S., C. Yen, P. Wang, H. Lin, J. Hsu, and T. Shen. 2007. The differential expression of hepatic genes between prelaying and laying geese. Poult. Sci. 86:1206-1212. https://doi.org/10.1093/ps/86.6.1206
  6. Drouva, S. V., B. Poulin, V. Manceau, and A. Sobel. 1998. Luteinizing hormone-releasing hormone-signal transduction and stathmin phosphorylation in the gonadotrope ${\alpha}T3-1$ cell line. Endorinology 139:2235-2239. https://doi.org/10.1210/en.139.5.2235
  7. Etches, R., J. Petitte, and C. Anderson-Langmuir. 1984. Interrelationships between the hypothalamus, pituitary gland, ovary, adrenal gland, and the open period for LH release in the hen (Gallus domesticus). J. Exp. Zool. 232:501-511. https://doi.org/10.1002/jez.1402320317
  8. Geppert, M., Y. Goda, R. E. Hammer, C. Li, T. W. Rosahl, C. F. Stevens, and T. C. Südhof. 1994. Synaptotagmin I: A major $Ca^{2+}$ sensor for transmitter release at a central synapse. Cell 79:717-727. https://doi.org/10.1016/0092-8674(94)90556-8
  9. Hall, T. R. 1982. Neurotransmitter effects on release of prolactin and growth hormone in vitro from pituitary glands of the pigeon, Columba livia. J. Endocrinol. 92:303-308. https://doi.org/10.1677/joe.0.0920303
  10. Howard, P. W., S. F. Jue, and R. A. Maurer. 2009. Expression of the synaptotagmin I gene is enhanced by binding of the pituitary-specific transcription factor, POU1F1. Mol. Endocrinol. 23:1563-1571. https://doi.org/10.1210/me.2009-0111
  11. Kang, B., J. R. Guo, H. M. Yang, R. J. Zhou, J. X. Liu, S. Z. Li, and C. Y. Dong. 2009. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult. Sci. 88:1975-1983. https://doi.org/10.3382/ps.2008-00519
  12. Knight, D. E., and P. F. Baker. 1987. Exocytosis from the vesicle viewpoint: an overview. Ann. N. Y. Acad. Sci. 493:504-523. https://doi.org/10.1111/j.1749-6632.1987.tb27237.x
  13. Ko, J., S. Humbert, R. T. Bronson, S. Takahashi, A. B. Kulkarni, E. Li, and L. H. Tsai. 2001. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 21:6758-6771.
  14. Koh, T. W., and H. J. Bellen. 2003. Synaptotagmin I, a $Ca^{2+}$ sensor for neurotransmitter release. Trends Neurosci. 26:413-422. https://doi.org/10.1016/S0166-2236(03)00195-4
  15. Kreft, M., V. Kuster, S. Grilc, M. Rupnik, I. Milisav, and R. Zorec. 2003. Synaptotagmin I increases the probability of vesicle fusion at low [$Ca^{2+}$] in pituitary cells. Am. J. Physiol. Cell Physiol. 284:C547-C554. https://doi.org/10.1152/ajpcell.00333.2002
  16. Kuo, Y. M., Y. L. Shiue, C. F. Chen, P. C. Tang, and Y. P. Lee. 2005. Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64:1490-1502. https://doi.org/10.1016/j.theriogenology.2005.03.020
  17. Langley, K., and N. J. Grant. 1997. Are exocytosis mechanisms neurotransmitter specific? Neurochem. Int. 31:739-757. https://doi.org/10.1016/S0197-0186(97)00040-5
  18. Martin, T. F. 2003. Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. Acta. 1641:157-165. https://doi.org/10.1016/S0167-4889(03)00093-4
  19. McCarthy, F. M., S. M. Bridges, N. Wang, G. B. Magee, W. P. Williams, D. S. Luthe, and S. C. Burgess. 2007. AgBase: a unified resource for functional analysis in agriculture. Nucleic Acids Res. 35:D599-D603. https://doi.org/10.1093/nar/gkl936
  20. Padmanabhan, V., F. J. Karsch, and J. S. Lee. 2002. Hypothalamic, pituitary and gonadal regulation of FSH. Reprod. Suppl. 59:67-82.
  21. Phoenix, T. N., and S. Temple. 2010. Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev. 24:45-56. https://doi.org/10.1101/gad.1839510
  22. Rowlands, D., A. Williams, N. Jones, S. Guest, G. Reynolds, P. Barber, and G. Brown. 1995. Stathmin expression is a feature of proliferating cells of most, if not all, cell lineages. Lab. Invest. 72:100-113.
  23. Rubin, C. I., and G. F. Atweh. 2004. The role of stathmin in the regulation of the cell cycle. J. Cell. Biochem. 93:242-250. https://doi.org/10.1002/jcb.20187
  24. Sheppard, M., J. Kraicer, and J. Milligan. 1980. Mechanisms governing the release of growth hormone from acutely dispersed purified somatotrophs. In: Synthesis and Release of Adenohypophyseal Hormones (Ed. M. Jutisz and K. W. McKems). Plenum Press, New York. pp. 495-523.
  25. Shi, Z., Y. Huang, Z. Liu, Y. Liu, X. Li, J. Proudman, and R. Yu. 2007. Seasonal and photoperiodic regulation of secretion of hormones associated with reproduction in Magang goose ganders. Domest. Anim. Endocrinol. 32:190-200. https://doi.org/10.1016/j.domaniend.2006.03.002
  26. Shin, O. H., J. Xu, J. Rizo, and T. C. Sudhof. 2009. Differential but convergent functions of $Ca^{2+}$ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release. Proc. Natl. Acad. Sci. 106:16469-16474. https://doi.org/10.1073/pnas.0908798106
  27. Shiue, Y. L., L. R. Chen, C. F. Chen, Y. L. Chen, J. P. Ju, C. H. Chao, Y. P. Lin, Y. M. Kuo, P. C. Tang, and Y. P. Lee. 2006. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66:1274-1283. https://doi.org/10.1016/j.theriogenology.2006.03.037
  28. Steegmaier, M., J. Klumperman, D. L. Foletti, J. S. Yoo, and R. H. Scheller. 1999. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol. Biol. Cell. 10:1957-1972. https://doi.org/10.1091/mbc.10.6.1957
  29. Takeichi, M., and K. Abe. 2005. Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol. 15:216-221. https://doi.org/10.1016/j.tcb.2005.02.002
  30. Thorner, M., J. Hackett, F. Murad, and R. MacLeod. 1980. Calcium rather than cyclic AMP as the physiological intracellular regulator of prolactin release. Neuroendocrinology 31:390-402. https://doi.org/10.1159/000123109
  31. Tomizawa, K., J. Ohta, M. Matsushita, A. Moriwaki, S. T. Li, K. Takei, and H. Matsui. 2002. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci. 22:2590-2597.
  32. Ullrich, M., K. Bundschu, P. M. Benz, M. Abesser, R. Freudinger, T. Fischer, J. Ullrich, T. Renne, U. Walter, and K. Schuh. 2011. Identification of SPRED2 (Sprouty-related protein with EVH1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J. Biol. Chem. 286:9477-9488. https://doi.org/10.1074/jbc.M110.171306
  33. Varju, P., K. C. Chang, E. Hrabovszky, I. Merchenthaler, and Z. Liposits. 2009. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells. Neurochem. Int. 54:119-134. https://doi.org/10.1016/j.neuint.2008.11.003
  34. Yen, C. F., H. W. Lin, J. C. Hsu, C. Lin, T. F. Shen, and S. T. Ding. 2006. The expression of pituitary gland genes in laying geese. Poult. Sci. 85:2265-2269. https://doi.org/10.1093/ps/85.12.2265

피인용 문헌

  1. Transcriptome Profiling Identifies Differentially Expressed Genes in Huoyan Goose Ovaries between the Laying Period and Ceased Period vol.9, pp.11, 2014, https://doi.org/10.1371/journal.pone.0113211
  2. Transcriptome profiling of the hypothalamus during prelaying and laying periods in Sichuan white geese (Anser cygnoides) vol.86, pp.8, 2015, https://doi.org/10.1111/asj.12356
  3. Comparative proteomic analysis of pituitary glands from Huoyan geese between pre-laying and laying periods using an iTRAQ-based approach vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0185253
  4. Comparative proteomic analysis of hypothalamus tissue from Huoyan geese between pre-laying period and laying period using an iTRAQ-based approach vol.89, pp.7, 2018, https://doi.org/10.1111/asj.13012
  5. Molecular cloning and expression analysis of the Synaptotagmin-1 gene in the hypothalamus and pituitary of Huoyan goose during different stages of the egg-laying cycle vol.12, pp.None, 2014, https://doi.org/10.1186/1477-7827-12-83