DOI QR코드

DOI QR Code

Effects of Dietary Chromium Methionine on Growth Performance, Carcass Composition, Meat Colour and Expression of the Colour-related Gene Myoglobin of Growing-finishing Pigs

  • Li, Y.S. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, N.H. (College of Animal Science and Technology, Jiangxi Agricultural University) ;
  • Niu, P.P. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Shi, F.X. (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Hughes, C.L. (Department of Mathematics, North Carolina State University) ;
  • Tian, G.X. (Changzhou Yongkang Agricultural and Animal Husbandry Technology Co., Ltd.) ;
  • Huang, R.H. (College of Animal Science and Technology, Nanjing Agricultural University)
  • 투고 : 2013.01.05
  • 심사 : 2013.03.06
  • 발행 : 2013.07.01

초록

To investigate the effect of dietary chromium (Cr) as Cr methionine (CrMet) on growth performance, carcass traits, pork quality, meat colour and expression of meat colour-related genes in growing-finishing pigs, 189 crossbred Duroc${\times}$(Landrace${\times}$Yorkshire) growing-finishing pigs (male, castrated, average initial BW $74.58{\pm}1.52$ kg) were selected and randomly allocated into four groups. Dietary treatments per kg of feed were as follows: 0 (CT), 0.3 mg/kg (T1), 0.6 mg/kg (T2) and 0.9 mg/kg (T3) Cr (in the form of CrMet; as-fed basis), and each treatment was replicated five times with 8 to 10 pigs per replicate pen. During the 28 d of the experiment, both the ADG and the ADFI increased linearly (p<0.05) as the level of dietary Cr increased. The F/G ratio decreased linearly (p<0.05). As dietary Cr increased, loin muscle areas (linear, p = 0.013) and average backfat thickness (linear, p = 0.072) decreased. Shear force (linear, p = 0.070) and Commission Internationale de I'$\acute{E}$clairage (CIE) redness (quadratic, p = 0.028) were increased. In addition, CIE Lightness (quadratic, p = 0.053) were decreased as dietary Cr increased. As dietary Cr increased, total myglobin (Mb) content (quadratic, p = 0.015) and the mb mRNA levels (quadratic, p = 0.046) in longissimus muscles of pigs were up-regulated. In conclusion, supplementation of dietary Cr improved growth and meat colour, but increased shear force and decreased IMF reduced palatability of longissimus muscles. Moreover, the increasing total Mb content and mb mRNA levels indicated that CrMet dietary supplementation may improve meat colour via up-regulating expression of the mb gene.

키워드

참고문헌

  1. AOAC. 1997. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Arlington, VA.
  2. Black, J. L., L. R. Giles, P. C. Wynn, A. G. Knowles, C. A. Kerr, M. R. Jones, A. D. Strom, N. L. Gallagher, and G. J. Eamens. 2001. Factors limiting the performance of growing pigs in commercial environments. In Manipulating pig production VIII (P. D. Cranwell) pp. 25-28. APSA, Adelaide, Australia.
  3. Evock-Clover, C. M., M. M. Polansky, R. A. Anderson, and N. C. Steele. 1993. Dietary chromium supplementation with or without somatotropin treatment alters serum hormones and metabolites in growing pigs without affecting growth performance. J. Nutr. 123:1504-1512.
  4. Fortomaris, P., G. Arsenos, M. Georgiadis, G. Banos, C. Stamataris, and D. Zygoyiannis. 2006. Effect of meat appearance on consumer preferences for pork chops in Greece and Cyprus. Meat Sci. 72:688-696. https://doi.org/10.1016/j.meatsci.2005.09.019
  5. Gandolfi, G., L. Pomponio, P. Ertbjerg, A. H. Karlsson, L. N. Costa, R. Lametsch, V. Russo, and R. Davoli. 2011. Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Sci. 88:694-700. https://doi.org/10.1016/j.meatsci.2011.02.031
  6. Giddings, G. G., and M. Solberg. 1977. The basis of color in muscle foods. Crit. Rev. Food Sci. Nutr. 9:81-114. https://doi.org/10.1080/10408397709527231
  7. Gu, Y., A. P. Schinckel, J. C. Forrest, C. H. Kuei, and L. E. Watkins. 1991. Effects of ractopamine, genotype, and growth phase on finishing performance and carcass value in swine: II. Estimation of lean growth rate and lean feed efficiency. J. Anim. Sci. 69:2694-2702.
  8. Haldar, S., S. Mondal, S. Samanta, and T. K. Ghosh. 2009. Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against peste des petits ruminants in dwarf Bengal goats ( Capra hircus). Animal 3:209-217. https://doi.org/10.1017/S1751731108003418
  9. Hoek, A. C., M. A. J. S. Boekel, J. Voordouw, and P. A. Luning. 2011. Identification of new food alternatives: How do consumers categorize meat and meat substitutes? Food Qual. Prefer. 22:371-383. https://doi.org/10.1016/j.foodqual.2011.01.008
  10. Honikel, K. O. 1998. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49:447-457. https://doi.org/10.1016/S0309-1740(98)00034-5
  11. Hunt, M. C., R. A. Mancini, K. A. Hachmeister, D. H. Kropf, M. Merriman, G. DelDuca, and G. Milliken. 2004. Carbon monoxide in modified atmosphere packaging affects color, shelf life, and microorganisms of beef steaks and ground beef. J. Food Sci. 69:C45-C52.
  12. Jackson, A. R., S. Powell, S. L. Johnston, J. O. Matthews, T. D. Bidner, F. R. Valdez, and L. L. Southern. 2009. The effect of chromium as chromium propionate on growth performance, carcass traits, meat quality, and the fatty acid profile of fat from pigs fed no supplemented dietary fat, choice white grease, or tallow. J. Anim. Sci. 87:4032-4041. https://doi.org/10.2527/jas.2009-2168
  13. Kim, B. G., M. D. Lindemann, and G. L. Cromwell. 2010. Effects of dietary chromium (III) picolinate on growth performance, respiratory rate, plasma variables, and carcass traits of pigs fed high-fat diets. Biol. Trace Elem. Res. 133:181-196. https://doi.org/10.1007/s12011-009-8417-7
  14. Kornegay, E. T., Z. Wang, C. M. Wood, and M. D. Lindemann. 1997. Supplemental chromium picolinate influences nitrogen balance, dry matter digestibility, and carcass traits in growing-finishing pigs. J. Anim. Sci. 75:1319-1323.
  15. Krzysik, M., H. Grajeta, A. Prescha, and R. Weber. 2011. Effect of cellulose, pectin and chromium(III) on lipid and carbohydrate metabolism in rats. J. Trace Elem. Med. Biol. 25:97-102. https://doi.org/10.1016/j.jtemb.2011.01.003
  16. Krzywicki, K. 1982. The determination of haem pigments in meat. Meat Sci. 7:29-36. https://doi.org/10.1016/0309-1740(82)90095-X
  17. Li, D., S. Siriamornpun, M. L. Wahlqvist, N. J. Mann, and A. J. Sinclair. 2005. Lean meat and heart health. Asia Pac. J. Clin. Nutr. 14:113-119.
  18. Lien, T. F., K. H. Yang, and K. J. Lin. 2005. Effect of chromium propionate supplementation on growth performance, serum traits and immune response in weaned pigs. Asian-Aust. J. Anim. Sci. 18:403-408. https://doi.org/10.5713/ajas.2005.403
  19. Lindemann, M. D., C. M. Wood, A. F. Harper, E. T. Kornegay, and R. A. Anderson. 1995. Dietary chromium picolinate additions improve gain:feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows. J. Anim. Sci. 73:457-465.
  20. Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  21. Mancini, R. A., and M. C. Hunt. 2005. Current research in meat color. Meat Sci. 71:100-121. https://doi.org/10.1016/j.meatsci.2005.03.003
  22. Mason, L. M., S. A. Hogan, A. Lynch, K. O'Sullivan, P. G. Lawlor, and J. P. Kerry. 2005. Effects of restricted feeding and antioxidant supplementation on pig performance and quality characteristics of longissimus dorsi muscle from Landrace and Duroc pigs. Meat Sci. 70:307-317. https://doi.org/10.1016/j.meatsci.2005.01.017
  23. Matthews, J. O., A. C. Guzik, F. M. Lemieux, L. L. Southern, and T. D. Bidner. 2005. Effects of chromium propionate on growth, carcass traits, and pork quality of growing-finishing pigs. J. Anim. Sci. 83:858-862.
  24. Matthews, J. O., A. D. Higbie, L. L. Southern, D. F. Coombs, T. D. Bidner, and R. L. Odgaard. 2003. Effect of chromium propionate and metabolizable energy on growth, carcass traits, and pork quality of growing-finishing pigs. J. Anim. Sci. 81:191-196.
  25. Mertz, W. 1993. Chromium in human nutrition: a review. J. Nutr. 123:626-633.
  26. Mooney, K. W., and G. L. Cromwell. 1995. Effects of dietary chromium picolinate supplementation on growth, carcass characteristics, and accretion rates of carcass tissues in growing-finishing swine. J. Anim. Sci. 73:3351-3357.
  27. Morrow-Tesch, J. L., J. J. McGlone, and J. L. Salak-Johnson. 1994. Heat and social stress effects on pig immune measures. J. Anim. Sci. 72:2599-2609.
  28. Ngapo, T. M., J. F. Martin, and E. Dransfield. 2007. International preferences for pork appearance: II. Factors influencing consumer choice. Food Qual. Prefer. 18:139-151. https://doi.org/10.1016/j.foodqual.2005.09.007
  29. Norman, J. L., E. P. Berg, H. Heymann, and C. L. Lorenzen. 2003. Pork loin color relative to sensory and instrumental tenderness and consumer acceptance. Meat Sci. 65:927-933. https://doi.org/10.1016/S0309-1740(02)00310-8
  30. NPPC. 2000. Pork composition and quality assessment procedures. 1st ed. National Pork Council, Des Moines, IA.
  31. O'Quinn, P. R., J. W. Smith, J. L. Nelssen, M. D. Tokach, R. D. Goodband, K. Q. Owen, and S. A. Blum. 1998. Effects of source and level of added chromium on growth performance and carcass characteristics of growing-finishing pigs. J. Anim. Sci. 76 (Suppl.2):125 (Abstr.).
  32. Oh, H. K., H. B. Choi, W. S. Ju, C. S. Chung, and Y. Y. Kim. 2010. Effects of space allocation on growth performance and immune system in weaning pigs. Livest. Sci. 132:113-118. https://doi.org/10.1016/j.livsci.2010.05.009
  33. Ohh, S. J., and J. Y. Lee. 2005. Dietary chromium-methionine chelate supplementation and animal performance. Asian-Aust. J. Anim. Sci. 18:898-907. https://doi.org/10.5713/ajas.2005.898
  34. Padmavathi, I. J., K. R. Rao, L. Venu, A. Ismail, and M. Raghunath. 2010. Maternal dietary chromium restriction programs muscle development and function in the rat offspring. Exp. Biol. Med. 235:349-355. https://doi.org/10.1258/ebm.2009.009199
  35. Page, T. G., L. L. Southern, T. L. Ward, and D. L. Thompson, Jr. 1993. Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs. J. Anim. Sci. 71:656-662.
  36. Peng, Z., W. Qiao, Z. Wang, Q. Dai, J. He, C. Guo, J. Xu, and A. Zhou. 2010. Chromium improves protein deposition through regulating the mRNA levels of IGF-1, IGF-1R and Ub in rat skeletal muscle cells. Biol. Trace Elem. Res. 137:226-234. https://doi.org/10.1007/s12011-009-8579-3
  37. Rama Rao, S. V., M. V. L. N. Raju, A. K. Panda, N. S. Poonam, O. Krishna Murthy, and G. Shyam Sunder. 2012. Organic chromium on performance, carcass traits, oxidative parameters and immune responses in commercial broiler chickens. Biol. Trace Elem. Res. 147:135-141. https://doi.org/10.1007/s12011-011-9314-4
  38. Shelton, J. L., R. L. Payne, S. L. Johnston, T. D. Bidner, L. L. Southern, R. L. Odgaard, and T. G. Page. 2003. Effect of chromium propionate on growth, carcass traits, pork quality, and plasma metabolites in growing-finishing pigs. J. Anim. Sci. 81:2515-2524.
  39. Sundaram, B., A. Aggarwal, and R. Sandhir. 2012. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats. J. Trace Elem. Med. Bio. 27:117-121.
  40. Toghyani, M., M. Toghyani, M. Shivazad, A. Gheisari, and R. Bahadoran. 2012. Chromium supplementation can alleviate the negative effects of heat stress on growth performance, carcass traits and meat lipid oxidation of broiler chicks without any adverse impacts on blood constituents. Biol. Trace Elem. Res. 146:171-180. https://doi.org/10.1007/s12011-011-9234-3
  41. Van Heugten, E. V., M. T. Coffey, and J. W. Spears. 1996. Effects of immune challenge, dietary energy density and source of energy on performance and immunity in weanling pigs. J. Anim. Sci. 74:2431-2440.
  42. Van Heugten, E. V., and J. W. Spears. 1997. Immune reponse and growth of stressed weanling pigs fed diets supplemented with organic or inorganic forms of chromium. J. Anim. Sci. 75: 409-416.
  43. Van Laack, R. L., S. G. Stevens, and K. J. Stalder. 2001. The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. J. Anim. Sci. 79:392-397.
  44. Vincent, J. B. 2000. The biochemistry of chromium. J. Nutr. 130: 715-718.
  45. Wagner, J. R., A. P. Schinckel, W. Chen, J. C. Forrest, and B. L. Coe. 1999. Analysis of body composition changes of swine during growth and development. J. Anim. Sci. 77:1442-1466.
  46. Wallace, W. J., R. A. Houtchens, J. C. Maxwell, and W. S. Caughey. 1982. Mechanism of autooxidation for hemoglobins and myoglobins. Promotion of superoxide production by protons and anions. J. Biol. Chem. 257:4966-4977.
  47. Wang, M. Q., and Z. R. Xu. 2004. Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian-Aust. J. Anim. Sci. 17:1118-1122. https://doi.org/10.5713/ajas.2004.1118
  48. Wong, R. H. F., and H. S. Sul. 2010. Insulin signaling in fatty synthesis: a transcription perspective. Curr. Opin. Pharmacol. 10:684-691. https://doi.org/10.1016/j.coph.2010.08.004
  49. Zhang, H. B., B. J. Dong, M. H. Zhang, and J. J. Yang. 2011. Effect of chromium picolinate supplementation on growth performance and meat characteristics of swine. Biol. Trace Elem. Res. 141:159-169. https://doi.org/10.1007/s12011-010-8727-9

피인용 문헌

  1. Effects of Chromium Methionine Supplementation on Growth Performance, Serum Metabolites, Endocrine Parameters, Antioxidant Status, and Immune Traits in Growing Pigs vol.162, pp.1-3, 2014, https://doi.org/10.1007/s12011-014-0147-9
  2. Effects of Graded Levels of Chromium Methionine on Performance, Carcass Traits, Meat Quality, Fatty Acid Profiles of Fat, Tissue Chromium Concentrations, and Antioxidant Status in Growing-Finishing Pigs vol.168, pp.1, 2015, https://doi.org/10.1007/s12011-015-0352-1
  3. Trivalent chromium alleviates oleic acid induced steatosis in SMMC-7721 cells by decreasing fatty acid uptake and triglyceride synthesis vol.29, pp.5, 2016, https://doi.org/10.1007/s10534-016-9960-2
  4. Effects of Chromium Methionine Supplementation with Different Sources of Zinc on Growth Performance, Carcass Traits, Meat Quality, Serum Metabolites, Endocrine Parameters, and the Antioxidant Status in Growing-Finishing Pigs vol.179, pp.1, 2017, https://doi.org/10.1007/s12011-017-0935-0
  5. Studies on meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential of pigs slaughtered at different growth stages vol.30, pp.12, 2017, https://doi.org/10.5713/ajas.17.0005
  6. Physicochemical and sensory properties of dry-cured ham with dietary processed-sulfur supplementation vol.57, pp.1, 2017, https://doi.org/10.1071/AN14556
  7. Dietary Supplementation with Pioglitazone Hydrochloride and Chromium Methionine Improves Growth Performance, Meat Quality, and Antioxidant Ability in Finishing Pigs vol.66, pp.17, 2013, https://doi.org/10.1021/acs.jafc.8b01176
  8. Effects of Maternal Undernutrition during Mid-Gestation on the Yield, Quality and Composition of Kid Meat Under an Extensive Management System vol.9, pp.4, 2019, https://doi.org/10.3390/ani9040173
  9. Combined supplementation of chromium-yeast and selenium-yeast on finishing barrows vol.50, pp.11, 2020, https://doi.org/10.1590/0103-8478cr20190406
  10. RNA‐seq‐based quanitative transcriptome analysis of meat color and taste from chickens administered by eucalyptus leaf polyphenols extract vol.85, pp.4, 2020, https://doi.org/10.1111/1750-3841.15082
  11. Dietary chromium yeast supplementation length in diets for growing-finishing pigs vol.50, pp.None, 2013, https://doi.org/10.37496/rbz5020210141
  12. Dietary supplementation of chromium for finishing pigs vol.51, pp.6, 2013, https://doi.org/10.1590/0103-8478cr20200554
  13. Chromium and energy restriction as substitutes for ractopamine in finishing gilts diet vol.52, pp.2, 2013, https://doi.org/10.1590/0103-8478cr20200736